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Abstract

Computational models of cognitive functioning hdecome a thriving paradigm in
Cognitive Science, yet they usually only emphagizeblem solving and reasoning,
or treat perception and motivation as isolated rfexiuA very promising approach
towards a broader architecture of cognition isRise theory of Dietrich Dorner. By

dealing with the integration of motivation and emntwith perceptual and reasoning
processes and including grounded neuro-symboliesgmtations, it contributes to an
integrated understanding of the mind.

The Psi theory supplies a conceptual framework liggting the interrelations
between perception and memory, language and meedsentation, reasoning and
motivation, emotion and cognition, autonomy andiaobehavior. However, its
origin in psychology, its methodology and the latldocumentation have limited its
impact to cognitive modeling.

This work adapts the Psi theory to Cognitive Sateand Artificial Intelligence, by
summarizing and structuring it, by identifying itontribution to understanding
cognition, and by providing a technical framewodk fmplementing models of the
theory.

These goals are reflected in the three parts sfthgsis. “Dorner’s Blueprint for a
Mind” is a synopsis of the work of Dorner and himup. It reviews the available
publications and implementations from the perspectf Cognitive Science and
represents the statements and assumptions ofabeyth

“The Psi Theory as a Model of Cognition” brieflyasts the domain of cognitive
modeling and establishes the Psi theory’s positiithin this field, its contributions,
limitations and some of its shortcomings. A spes&dtion focuses on computational
models of emotion.

One of the most interesting aspects of the theotiié suggestion of hierarchical
neuro-symbolic representations which are groundeddynamic environment. These
representations employ spreading activation meshaito act as associative
memory, and they propose the combination of nelgatning with symbolic
reasoning and planning. “MicroPsi” is a compreheasioftware framework designed
to implement and execute models of the Psi thesmnalti-agent systems. The final
chapter introduces this framework and illustrate@pplication.
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Introduction: Building blocks for a Mind

“What | cannot create, | do not understand”
Richard P. Feynman, 1988

Let me invite you to a journey into what might bees as a piece of really old
fashioned Artificial Intelligence research, a workompletely dedicated to
understanding the functional workings of intelligenand the mechanisms that
underlie human behavior. The exploration of indidt aspects of intelligence:
perception, representation, memory and learningnhrphg, reasoning, behavior
control and so on have lead to tremendous insights fruitful applications. Take
logic as an example: once seen as a fundamentadiegt of human intelligence, the
design, examination and application of reasonirgiesys has become a very active
area in Artificial Intelligence. However, it becardear that symbolic reasoning falls
short not only in modeling low level behaviors mitlso difficult to ground into real
world interactions and to scale upon dynamic emwitents (see, for instance,
Dreyfus 1992). This has lead many researchers tnddm symbolic systems
altogether and instead focus on parallel distrihugmtirely sub-symbolic approaches,
which are well suited for many learning and conteslks, but are difficult to apply
for areas such as reasoning and language.

Of course, most research domains of Al have resulteextremely valuable and
even useful results. They paved the way for masgiglines of computer science, as
diverse as computer vision, knowledge managemeitd, hining, data compression
and the design of autonomous robots.

Each of these fields opens up its own host of agena follow, and many of them
are not going to meet at an integrated understgndinwhat makes up a mind.
Building different tools that model tasks requiriimdelligence when performed by
humans does not cumulate in an overall model ofarintelligence! Thus, there
have been calls from different disciplines—Al, psglogy, cognitive neuroscience
and philosophy—to concentrate on integrative aechires that are laid out
specifically for the purpose of modeling and unterding the human mind.

Such a broad architecture will necessarily be ehalat first (cite broad and
shallow architectures), replacing crucial composenith scaffolding and complex
behaviors with simple ones. It will have to rely @eas, paradigms, results and
opinions stemming from many disciplines, each $pgrttheir own, often
incompatible methodology and terminology. And canpsstly: it will be full of
mistakes and incorrect assumptions, misrepresengatiof results, misnomers,
distortions resulting from skewed perspectives, avel-simplifications. Yet, there is
reason to believe that despite inevitable diffiesltand methodological problems, the
design of unified architectures modeling the breartmental capabilities in a single
system is a crucial stage in understanding the humiad, one that has to be faced
by researchers working where the different sciemomeeerned with human abilities
and information processing interface. We will haweeput up with the burden of
interdisciplinarity, because the areas of humarelligence are inseparably
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intertwined. Language can not be fully understodthaut understanding mental
representation, representation can not be understéthout perception, perception
not without interaction, interaction not withouttiao control, action control and
affordances not without motivation, and motivatioot without the contexts set by
evolution, environment, physiology and socialitpdaso on. An understanding of the
mind that does not regard the psychological, ttitagathe physiological interface to
the world, language, reasoning, emotion and memang their common ground
(which I believe to be information processing) witit only be incomplete in isolated
parts, but is not going to be an understandind.at a

In a way, the designer of a unified architectureinisa similar situation as the
cartographers that set out to draw the first mdgheoworld, based on the reports of
traders and explorers returning from expeditiorte imcharted waters and journeys
to unknown coasts. These travelers were of vergrdevilk, and their reports were
often contradicting, incomplete and inaccurate. SBpaf suspected continents turned
out to be islands, small islets turned out to beerops of vast lands. What appeared
to be a sea sometimes was just a lake, differexttepl appeared to be identical, and
passages thought to be leading to known landsiteaderritory that was previously
unheard of. All the while, the cartographers weteng at their drawing tables (or
were traveling on some boat themselves), and dheiv maps based on their own
mistaken preconceptions, which constrained continénto circular shapes with
biblical settlements in their center.

All the while, there were geometers and prospeabrsork that did proper maps
with tools fit for the task. They charted housdBages, roads and counties, over and
over, and with often astounding accuracy. And wtlikeir work was irreplaceable for
their respective and local purposes, the world napkter generations were not
derived by putting their results together into asaio of billions of diagrams of
houses, farms, crossroads and villages, but bigatjt improving on the initial tales
and faulty sketches that attempted to represenvtiiel as a whole.
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The design of a cognitive architecture might beartaken as a purely philosophical
endeavor, or with a common platform for psycholagitheory in mind. But taking
this job to the Al laboratory adds something inediie: it requires the theory not
merely to be plausible, but furthermore requirem ibe fit for implementation, and
delivers it to the instant and merciless battletesting. To implement a theory, it
needs to be formal even in its scaffoldings, cotepfespecified in the crucial parts
and crevices and outspoken about the messy delélsause of the educating
experiences they tend to have had while testing gremature conceptions of even
relatively simple, straightforward problems suchsagting of numbers or unification
of variables, computer scientists tend to be sahdrcareful when compared to many
a philosopher, humble, pedantic and pessimistic nrwrmmpared to some
psychologists. They also tend to know that theeeraany examples for models of
mental processes that are technically simplistig, iot easy to invent because of
their unintuitive nature, such as self-organizingps and backpropagation learning.
On the other hand, they know of problems that gspaeently much easier to
understand than to fully conceptualize and implemsurch as frames (Minsky 1975).

1 pietro Vesconte is considered as the first pridass cartographer to sign and date his works
regularly. He was one of the few people in Européote 1400 to see the potential of
cartography and to apply its techniques with imation. As can be seen in the world map he
drew around 1320, he introduced a heretofore unseearacy in the outline of the lands

surrounding the Mediterranean and Black Sea, pigblakcause they were taken from the
portolan (nautical) charts. Vesconte’'s world mapmgeacircular in format and oriented with

East to the top (see Bagrow 1985).
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Building an Al model of the mind amounts to whae tphilosopher Searle (himself
not sympathetic of the idea) has termed “strong Ai"contrast to “weak Al” (Searle

1980). “Strong Al” means treating Al as a sciennd as a philosophy, not as a field
of engineering. In this way, Al offers some uniquethodological advantages.

When looking at a system, we might take differg¢ahses, as the philosopher Daniel
Dennett suggested (Dennett 1971): the physicatstamhich attempts a description
at the level of the relevant physical entities (piysical make-up and the governing
laws), the design stance (how the system is cactstiyand the intentional stance (a
description of the system in terms of beliefs, desiintentions, attitudes and so én).
Computer Science allows taking an active designcstathe one of a constructing
engineer (Sloman 2000). Understanding a systenmompliter Science means to be
able to express it fully in a formal language, @&xgressing it in a formal language
amounts (within certain constraints) to obtaininfuactional model of the thing in
question. If the system to be modelled is a physigatem, such as a thunderstorm,
then the result will be a simulation of its functiog. But if we are looking at an
information processing system that in itsel§igperveningover its substrate, then we
are replacing the substrate with the implementatayer of our model and may
obtain a functiona¢quivalent.

This is what gives Al much of its fascination andkes it appear dubious in the
eyes of many a skeptic beholder.

The peculiarity lent by the constructionist statweAl sadly did not attract many
philosophers into the labs of the computer sciademartment (although it attracted
some see for instance Boden 1977; Pollock 1995; Haugkl1985, 1992; Sloman
1978, and it seems Al yet has some distance tordoefre it may announce a
complete success in its quest. Yet, every failuso delps to shed some light,
because an approach not working is a hypothesiffiéal, and an approach that is
only applicable to a limited domain might be theamwanted solution to a domain-
specific problem.

The history of Al has seen too many attempts tét Bystems acting as models of
cognition as to mention them all. Expert Systemstdemonstrated that it is difficult
to manage real-world complexity with static rulesed models, even if the domain is
limited. Newell and Simon’s General Problem Soly#861) did turn out to solve
some specific real-world problems not very well. gdubodies of predicate-logic
based knowledge combined with reasoning mechanisutd) asCyc (Lenat 1990)
have not learned to autonomously acquire new kridydeand handle real-world
tasks. Purely connectionist architectures havetyethow that they are capable of
learning to plan and use language (although these Heeen taking steps). Thus,

2 |t might be difficult to draw a dividing line betgn the physical stance and the design stance:
the levers and wheels making up a watch are pHysitities as well as parts out of an
engineer’s toolbox. On the other hand, the lowestls of description used in physics are in a
state of flux. They are made up by a bunch of cdingeheories that are pitched against each
other with respect to the question how well thegstauct observable behaviour. In fact, both
the physical stance and the design stancefuaretionalist stances, each with regard to a
different level of functionality.



strong Al's results (apart from a huge number ofmiamsely useful bits that are
scattered all over Computer Science now) mainlyssbrout of questions, methods,
mechanisms, architectural sketches and heavilyibest signposts saying: “beware”
or “promising things waiting ahead”.

Given the methodological benefits lent to Al by Qumrmer Science, it is not
surprising that some of the more adventurous pdggigis were attracted to it and
started adding to it by calling for Unified Architerres of Cognition (Newell 1973).
The most well-known are probably EPAM (Gobet, RiemnStaszewski and Simon
1997), Newell, Laird and Rosenbloonf8oar (1987), and Anderson and Lebiere’s
ACT (Anderson 1983, 1990). To sum up the specifitgshese architectures with
maximum brevity (we will revisit them later on): BN is a model concentrating on
concept formation based on high-level perceptiagr3nodels rule-based problem
solving, and ACT focuses on problem solving witBpect to memory organization.
EPAM, Soar and ACT are not autonomous systemshdir taw form, they are just
cognitive high-level modules lacking motivation.

It has often been argued that cognition can notseen in isolation from
motivation and/or emotion, because these shapeepbrformation and direct the
course of cognitive action control. The work disgd in this thesis has largely been
inspired by a frame set by the theoretical psyadfistoDietrich Dérner—the Psi
theory»—partly because it addresses its subject in suchag as to allow an
implementation as a computational model, while liog enough overlap to
existing theories in cognitive science to makeoinpatible or comparable to other
approaches. On the other hand, the scope of tloeytlmenders it somewhat unique.
Dorner addresses not just isolated aspects of timeah mind, but explains the
interchange of perception, action, mental repredgem and emotion, as he deems
them largely inseparable. Unlike the other unifieelories of cognition, Dorner treats
the cognitive system not as a module that is sdbugertain kinds of calculations,
but always aragent Of course, the Psi system also does nothing dértiia kinds of
calculations—but the focus in not on the abstraagiits of some disembodied notion
of cognition. Psi systems are motivated all theetithey perceive, learn and cogitate
always with respect to some goal that stems fromadels, an action control layer
and a certain access to the environment. The ggespective—that of a system that

3 Since the Psi theory attempts to be a groundimgpeetive for psychology, perhaps it is not
surprising that Dorner has chosen the favorite kGtetter of psychology as its namesake. It
might seem somewhat unfortunate that this collissonly with terms to denote pressure in
physics and extraordinary abilities in parapsychglobut also with another psychological
theory “of everything” by Julius Kuhl (2001). LikBorner, Kuhl attempts to integrate the
many perspectives of psychology by embedding thetm & foundational theory. Both Psi
theories are largely concerned with motivation awtion control and are probably even
slightly influencing each other. However, where Ktdkes a “top-down” route starting from
the psychology of personality, Dérner firmly grosrits model on computational accounts and
attempts to ascend from there. It might be faisap that there is a lot of ground not yet being
covered between the two Psi theories.
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is autonomous, pro-active, persistent, situated addptive—is shared by most
contemporary approaches in Al.

Dérner’'s theory of the mind as laid down in his bd8auplan fiir eine Seele”
(“Blueprint for a Soul”) amounts to a head-on approach, starting out avitattempt
to justify his reductionist treatment of psycholpogn explanation of autonomy in
terms of dynamical systems theory and then dehiimtg the mechanisms of
perception, mental representation, memory, actamirol and language, all the time
maintaining a design stance and often supplyinggestipns for algorithmic
solutions. Ddrner not only claims that a computaiofoundation of psychological
principles is possible, but that it is necessaryet-as a replacement of psychological
assessments, but as a much needed explanationtagrhtion.

Dérner and his group have implemented a graphiealral simulator (DAS,
Hammer and Kiinzel 2003) aiding in demonstratingesaspects of Dorner’s neural
models of cognition and a prototypical Psi ageokmamed “James” that resembles a
little steam locomotive and navigates an islandldvan pursuit of survival and
exploration. James has been written in Delphi-Remed does not make use of the
neural principles of the theory. However, it nicéljustrates Dorner's model of
emotion and contains solutions for perception, rie@r and planning within the
conceptual framework of the Psi theory.

The Psi theory has been laid down in the courgeafy lectures at the University of
Bamberg, the comprehensive botBauplan fiur eine Seele”(Dérner 1999) that
provides introduction and explanation to many atpet the theory, the follow-up
“Die Mechanik des Seelenwagen@®drner et al. 2002) and various publications that
describe earlier stages of the theory (Ddrner 19846, 1977, 1988, 1994, 1996;
Dérner and Wearing 1995; Ddrner and Hille 1995, riedy Hamm and Hille 1996;
Bartl and Dorner 1998b, 1998c; Hille and Bartl 198iille 1997, 1998), individual
parts and components (Ddrner et al. 1988; Dorneéd4,19996b; Kinzel 2003;
Strohschneider 1990; Gerdes and Strohschneider; gtaub 1993), experiments
(Strohschneider 1992; Bartl and Dérner 1998, D¥@9; Ddrner et al. 2003; Dorner
et al. 2005) and related work within Dérner’'s gro(Ipérner and Gerdes 2005,
Hammer and Kinzel 2003). Last but not least, thelecof the Psi agent
implementation is publicly available too (DoOrnerdamGerdes 2004). There is
currently no comprehensive publication in the Estglianguage that covers the Psi
theory, nor has it to my knowledge been serioustsoduced into the discussion of
Artificial Intelligence and Cognitive Science beybeome brief mentions in review
papers (Ritter et al. 2002; Morrison 2003). Thisyra#so be due to the fact that even
though concepts and ideas of the Psi theory argatinte with a lot of work in Al,
the psychological terminology, the lack of formalibn and the style of presentation
differ considerably.

Dérner’s theory has much in common with a numbecajnitive architectures that
have been developed at computer science departnseits as the Neural Theory of
Language of Jerome Feldman’s group at Berkeleyd(Rah 2006), Stan Franklin's
attempts at ‘Conscious Agents’ (2000), Aaron Slomanspiring but not very
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detailed Cognition and Affectarchitecture (which in turn owes much to Antonio
Damasio) (2001), and its reasoning components argthods of internal
representation could be compared (even thoughethdtrwill find many differences)
to the psychological cognitive architectures.

Once we arrive at a model, testing becomes esbesatial it has been performed
extensively on existing cognitive architectureseliRCT and Soar. While testing
partial models of human cognition is no easy tasknmaries of testing processes
(Ritter and Larkin, 1994) and of some possiblest¢Rtitter 1993) are given in the
literature, and Ritter and Bibby (2001) provide twaarly useful example sets of
comparisons. Yet you will notice that there is f@aputer on testing the Psi theory in
this work! This is due to the current state of theory; as Frank Ritter complained:
“The PSI architecture is currently incomplete, whicaises interesting questions
about how to judge a nascent architecture. PSI dusshave a large enough user
community and has not been developed long enoulgavi® a body of regularities to
be compared with let alone adjusted to fit. How €81 be compared with the older
architectures with existing tutorials, user manyadisraries of models, and example
applications?” (Ritter et al., p. 37)

Indeed, any attempt of evaluating and testing tls tReory raises grave
methodological issues. First of all, the Psi thedoes not attempt to look at the
different aspects of cognition, like memory, beleavegulation, motivation, emotion,
perception, in isolation, but combines them alhinommon framework instead. This
in itself is of course no obstacle to testing, lseaeven if different faculties are
deemed inseparable to achieve a certain cognitiyallity, this capability might
still be evaluatedndependently. But a standpoint that attemptstegrateall aspects
of a cognitive system, however briefly and fleeljnguill inevitably create a set of
assertions so extensive and far-reaching that lit véd an immense task just to
formulate them. The derivation of a model of suchthaory that is fit for
implementation seems even more difficult. And stoué succeed in our attempts to
implement such a model—partial and abridged in maays, and hampered by the
tools and methods at hand—what can we compar@ ithe Psi theory is for instance
not concerned with low-level neurophysiology andse properties of cognition that
stem directly from the specifics of the connectiwf the individual cortical areas, or
the speed of propagation of activation in biolobisaurons. While it attempts to
maintain compatibility with general neurobiologiegsumptions, the Psi theory must
abstain from making quantitative predictions on rosaientific experiments.
Furthermore, the Psi theory claims to be a thedriiumancognition, but while it
admits that most feats of problem-solving that amé&jue to humans depend on the
mastery of verbalization, it is still far from sudpimg a working model of the
acquisition and use of grammatical language. Proldelving in the Psi theory is
therefore limited to tasks below the level of husdaor the time being. Does this
make it a theory of animal cognition? If so: of winianimal? This question might not
find an answer either, because even though thth&aiy is aware of the relevance of
perception of a rich real-world environment for tteemation of grounded mental
representations, it can not provide ready solutimnsthe difficult challenges real-
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world perception puts to an organism. And if weefyo the issue of an accurate
model of perceptual processes, we will be runnitig problems caused by the limits
of the implemented set of learning, categorizind planning mechanisms, which all
fall short of the state of the art in the relevaigciplines of Computer Science.
Almost paradoxically, while claiming to be in intagive theory of the different
aspects of mental functionality, Psi fails to beywgood at modeling these aspects in
isolation.

The stakes of the Psi theory lie elsewhere: itpgsidions are of a qualitative
nature. Rather than predictihgw longit takes andhow likelyit is to retrieve an item
from working memory, it addresseghat an item in working memoris: how it is
related to inner imagery and to language, the wayg represented and how it is
grounded in interactional contexts. Instead ofignihe exact influence of a negative
emotional setting on problem solving and task duiitg, it makes statements about
the structure of a negative emotion and the wayplpro solving and task switching
are linked to emotion. Before it compares the #ffiof individuals to different sets
of stimuli, it deals with the motivational system éxplain things like affinity and
aversion. The Psi theory is no model of human perdmce—it is a blueprint for a
mind. Or, if you permit the use of my original m@har: it is an attempt to draw a
map of the world in the confines of a science thalominated by geometers that
grew accustomed to charting individual villages amatleys, and an attempt that is
necessarily hampered by the need to neglect detaihe sake of perspective, and to
accept crudeness for the sake of manageability.

Naturally, it is also possible to put structurab@®ptions to the test. But this
requires the development of alternative explanationpitch them against, and over-
arching theories competing with the Psi theory séerbe in short supply. So far,
Dérner seems to have resorted to two ways to catbetiat problem:

1. Instead of strictly testing the theory by itsdabimplementation, he uses the
model as alemonstrationHe has realized Psi agents that he has put iptolaem
solving situation similar to that used in evalugtihuman performance: a virtual
world that has to be navigated in search of regsurt do not believe that this
demonstration, while successful, qualifies as & tescause the same task could
probably solved at least equally well by a différenuch more simple agent that is
specifically tailored for the task Such a “dumb”, specialized agent might fail in a
different environment—but unfortunately, that applito Dorner's model as well,
because his current realization of the Psi agetddsrestricted to use it in different
domains without significant changes.

2. Individual aspects of the implementation haveealy been compared to
humans that were asked to perform in the same gmoBblving scenario, especially
the emotional modulation during the course of #st,tand the results and strategies
while tackling the task (Detje 1999; Ddrner et2002, pp. 241; Dérner et al. 2003).
But since it is not an isolated component that sntiee comparison, it is not always
clear to the critical reader whether an individpasitive or negative result in the test
can be attributed to the accuracy of the theonyitéolack thereof), or if is due to the
specifics of the experimental setting and the matfr simplification that has been
applied to individual areas of the implementation.



The fact that Dorner’'s methodology deviates frormpezimental psychology does not
automatically give it a domicile under the roofasfother science. It is, for instance,
neither a typical work in Al, and by attempting ltouse it under Al's roof, | am
bound to inherit some of the original methodolobtoauble. While there is a history
of publications that focus on conceptualizationamfhitectures for modeling the
human mind (Minsky 1986, 2006; Franklin 2000; Slom2001; Brooks 1986;
Winograd and Flores 1986), most work in Artificiatelligence is leaning heavily on
the engineering side, and | would be much more odadfle if it would offer more in
the way of testable details, like a distinctive gilat distributed classification
algorithm that | could judge against against emgstinethods and end up comparing
the numbers.

Even in the light of the difficulties posed not ptily a nascent model but perhaps
also by a nascent methodology, Dérner’'s questiomanes urgent and exciting: how
does the mind work? It is a question that should certainly fall victim to
“methodologism”, the fallacy of ignorance toward®de aspects of a realm that
happen to lie outside the methodology already atih&eyerabend 1975). It is not
the methodology that should dictate the questiosteid, it is the formulation of the
guestion which has to forge the tools for answeringTreading new territory,
however, does not relieve us from the burden ofrgific accuracy and the
justification of both results and the methods wepkan to obtain them, and we have
to remain especially wary and vigilant towards theestion whether we are still
pursuing a productive paradigm, one that yieldgms results and applications, or if
we have fallen victim to a regressive program grehd our days with patchwork and
rationalizations of the failure of theoretical asgions to stand up to scrutiny
(Lakatos 1977, and Feyerabend 1975).

After many discussions with researchers in Art#fidintelligence and Cognitive
Science and much encouragement | have receiviuhK that there is every reason to
believe that the Psi theory has an enormous pateati becoming a productive
paradigm. Domains like artificial life, robotic smr (Kitano, Asada, Kuniyoshi,
Noda et al. 1997), the control of autonomous robotsdynamic environment, social
simulation (Castelfranchi 1998), the simulation jofnt acquisition of language
categories (Steels 1999) or simply the applicatiwrproviding students of Computer
Science with a hands-on experience on Multi Agestesns development suggest
many immediate uses for agents based on the Psitemitire. At the same time,
developing and experimenting with Psi agents i©opportunity to sharpen notions
and improve our understanding on the fundamentdétiesnand structures that make
up a cognitive system, based on motivation anderbun its interaction with an
environment. The first step will necessarily congisan analysis and discussion of
the Psi theory itself. (This is of foremost impaita, because the currently available
presentations of the theory leave much to be d&simed thus, it will be what makes
up the first two sections of this work.) Next, wél\wave to see how we can put the
principles of the Psi theory to work, that is, hove can create a framework to
implement the theoretical entities proposed, anddsign agents that make use of
them. (That's the remainder of this thesis.)
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Over the course of the last years, the author @dthdents have constructed a
framework for the design of a specific kind of Bgents: MicroPsi (Bach 2006). This
framework allows for creating, running and testikiicroPsi agents in a virtual
world, or through a robotic interface (Bach 2003h)accordance with the Psi theory,
it is possible to define these agents using exbtaitspreading activation networks
(Bach and Vuine 2003), and to lend them a hybrahigecture that unifies symbolic
and sub-symbolic aspects within a single mode etufgtion. We have also defined
and implemented an agent based on a partial veoditre Psi theory—the MicroPsi
agent (2003). These agents make use of the progodedl network architecture,
and while mainly based on Ddrner’s theory, we néhegitated to introduce changes
and borrow from other approaches when deemed aparep Current work is
concerned with extensions of the agent for learnémgl classification, and its
application to robotic environments.

On the following pages, you will find three secton

1. Ddrner's “Blueprint for a Mind” is a summary of the book containing the
main elements of Ddrner’s theory and approach.lll ngsort to Dorner’s
other publications wherever necessary to supplytiaddl details, and the
reader will find most concrete elements of the thieas far as they are
published.

2. The Psi Theory as a Model of Cognitina short comparison with other
approaches in the fields of cognitive modeling antificial emotion, along
with a critical discussion of the theory.

3. The MicroPsi Architecturds a description of our (the author’'s and his
students’) framework for the design of a cognitarehitecture embodying
the Psi theory.

Have a nice journey!



1 Ddrner’s “blueprint for a mind”

This section will address Dérner's theory on mermgbresentation, information
processing, perception, action control and ematiodetail. The bookBauplan fur
eine Seele’(99) covers its outline and will act as a main souktéhere needed, |
will resort to other publications of Dérner and lgioup to fill in necessary details
and extensions, especially the more technibéchanik des Seelenwageng02)
that is concerned with aspects of an implementatfdhe theory.

While rooted in the field of psychology, there istwally very little psychological
methodology to be found in Dérner’s book “Bauplén éine Seele”. Rather, it might
be seen as an attempt to bridge the gap betweerbuing questions of the
Philosophy of Mind and the computational approacpesvided by Computer
Science. Thus, it is a book genuinely belongingthiie interdisciplinary field of
Cognitive Science.

Dorner does not give much room to the terminoldgéoad cultural specifics of
the discussions in philosophy and computer scieand, he also usually foregoes
some subtlety regarding the established notiongsyfchology for the sake of
interdisciplinarity, even though he sets out tovie—first of all—a reductionist
foundation of psychology The inevitable price of these tactics is the néed
introduce, sometimes in a simplified manner, mdsthe basic concepts Ddrner’s
theory relies on, and consequently, a considerpbltion of the text consists of
colloquial explanations of the necessary ideas Iggy the different disciplines.
For example, from Atrtificial Intelligence, he bowe elements of dynamical systems
theory, neural networks, simple semantic netsps;rirames and some tools for the
description of algorithms. Philosophy seemingly [igs functionalist und some
structuralist foundations, along with fruitful mpteors and a host of questions Dorner
strives to answer. Genuinely psychological inpetst from contemporary theories
of perception, emotion theories and a theory oioactontrol that has partly been
developed by Doérner himself (see Ddérner 1974; Doared Wearing 1995), and

4 Because Dérner’'s 1999 and 2002 publications (“Baufilaeine Seele”, and “Die Mechanik
des Seelenwagens”, respectively) are mentiveegdfrequently throughout this section, | will
abbreviate the references as (99) and (02) fromaraw

5 See p. 809, where Dérner notes in the afterwobdgistotle laconically expressed: ‘The soul
is the principle of the living’, and this | understl as ‘the soul is the set of rules that determine
the functioning of an organism, if it is alive’.—tlfiat is true, then one has to simply put down
these rules to exercise psychology. And this istWwhzave tried in this book.” Also, in the
introduction (99: 16), Dorner expresses why he giges a need to ground psychology in a
nomothetic description: “But if we refuse to consideir mental life eelenlebgnas an
agglomerate of if-then-statements, we will get iatdifficult position regarding psychology.
We had to accept then that psychology could at jpasly be exercised as a science. [...] We
could not explain these [psychological] processenjld thus be unable to construct theories
for them. The human soul would be inaccessiblectense, and psychagy would not be
scientific [Seelewissenschaft but merely historical [Seelénnde—psychography’], a
description of things that happened here and tla¢ithjs and that time.”
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incorporates ideas of Norbert Bischof (1968, 197889, 1996), Friedhart Klix
(1984, 1992), Ulrich Neisser (1967, 1976), Jensiesen (1983) and many others.
Dérner’s theory also owes much to his extensivearsh background in modeling
and evaluating human problem solving. “Bauplandiiie Seele” puts these different
accounts into a single frame of reference, therebgessarily aggravating some
psychologists and philosophers, and even a few atengscientists, but providing
profound joy to interdisciplinary minded cognitigeientists (Ritter et al. 2002) and
students of Artificial Intelligence and Cognitivei&nce in Germany. At the time of
writing, no English translation of Dérner's books the Psi theory is available; the
following shall act as a summary, tailored for et and background of those
working in the field of Artificial Intelligence antelated disciplines. While 1 strive to
remain faithful to the original sources, | am bododntroduce misrepresentation and
inaccuracies that are not warranted by the origil Because | will leave out many
details and make no attempt to replicate the bheaditDorner's examples, his
didactic endeavors or his argumentative excurdestie areas of cognitive science,
philosophy, literature and plain common sense, ¢hapter can not replace a proper
translation. Still, my main goals for this sectiare to piece the theory together from
the available sources, to produce something lilsh@t guide to it, and to make it
generally more accessible, mainly by removing reldumncies.

1.1 Introductory remarks

“Bauplan fir eine Seele” translates to “bluepriot & soul”, whereas the entity the
book strives to explain is the mindGgist”), rather than its more spiritual
terminological companiof.Dérner does not just address cognition, but fosuse
what is commonly described as symbolic and sub-sjimbreasoning as a
continuum. By choosing “soul” instead of “mind”, Bi&r apparently puts emphasis
on this perspective, which somewhat differs frora kbgically reasoning agents of
traditional Artificial Intelligence. (Interesting/yby explaining emotion as an aspect
of the configuration of a cognitive system, as wi#l wsee, Dorner also takes a
radically different position than most work of Aitial Emotion research, which
often treats emotion as a mere “add-on” to the itivgncore.) To avoid confusion, |
will use the word ‘mind’ from now on indiscrimindyeto refer to both ‘Geist’ and
‘Seele’ when | translate from Dorner’s bobk.

Nevertheless, the Psi theory is an attempt at septang the mind as a specific
kind of machine, much in the same way as physipeesents the universe as a kind

8In accordance with Norbert Bischof (1996a), Dérneplains religion as the result of
culturally perpetuated attempts at hypothesizingualthe reasons and hidden aspects of
intensely meaningful, large-scale events—such aahee, natural disaster, death—based on
analogies (99: 746 -747).

Dérner’s choice of the word ‘soul’ instead of ‘mindight also be due to a historical legacy,
i.e. the terminology of Aristotle. (Compare p. 33)ere Dorner cites Aristotle with “The soul
is reason and principle of the living body.” On280, “Geist’—mind—is used as a translation
for ‘intellect’, i.e. the exclusively rational asgenf the mind.) (See also Hille 1997.)



of machine. Here, a machine amounts to a (possédily large, but not infinite) set of
if-then statements. Such a description is Dérnextgliirement to psychology, as long
as it wants to be treated as a (natural) scier@el@®), and of course it does not need
to prevent anyone from recognizing the mind as ida@nd creative, or to neglect
the reality of phenomenal experience.

The rule-based view of the mind taken by the Psoth does not imply that the
mind can be best understood as a single-tieredrrdieism made up of yes-no-
decisions, but rather as an intricately linked zfuand self-extending causal network
structuré (99: 18). In subscribing to a rule based, i.e. potational approach, the Psi
theory is not exactly alone. Tlemputational theory of the mirg widely agreed on
within cognitive sciencé,and Dorner definitively subscribes to it, whendagys: “|
want to show that mind is entirely possible as cotafional activity.” (99: 22)

Psiis not only the name of the theoretical framewdekcribing human psychology,
but also frequently used to denote the agent ttiatas a model of the theory. This
ambiguity also applies to the style the theoryisrfulated: Dérner does not put much
effort into maintaining a clear distinction betwebe ideas of the theory and possible
instantiations of this theory in an agent impleraéinh. This is different to the way
some other theories of cognition are laid down;if@tance within the ACT theory
(Anderson 1983, 1990), John Anderson attempts #iinduish between main
assumptions and theses (the framework), ways deimgnting these (the model) and
the actual experiments (i.e. particular implemeores). These partitions are not to be
found in DOrner’s books, neither have | tried teate such a division here, because
its absence does not provide an obstacle to oyroger—to piece together Dorner’s
theory, while aiming for an implementation. Stitimight be helpful to bear in mind
that the core of the theory consists probably eftinctional entities and the way and
magnitude they are interrelated to create a dynawmimitive system. Whenever it
comes down to particular methods of calculatings¢hmterrelations and weighting
the influences, we are likely to look at an (oftpreliminary and sometimes
incomplete) model. For example: throughout Dérnécdsks, a number of relatively
detailed circuits (built from threshold elementge aused to illustrate ways to
implement certain bits of functionality. While tleedlustrations nicely show that
neural elements are suited to perform the necessanputations, Dérner does not
claim that they picture how this functionality istaally implemented in the human
cognitive system, but demonstrates that it is fpbssio construct the necessary
computational arrangements using artificial neur@iace | am confident that this
point is not controversial here, | will not hesitato replace them by simpler
explanations of the required functionality whenepessible.

8Technically, of course, it might be possible to lempent an intricately linked, fuzzy and self-
extending causal network structure using a singled determinism made up of yes-no-
decisions, such as a von-Neumann computer. Compuddtiequivalence does not mean
paradigmatic indifference.

9This does not mean that there is no dissent onfao@ognitive Science can successfully go
in the application of the computational theorytad mind.
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While Dorner has specified his theory in much mdegail than for instance Aaron
Sloman did for theCognition and Affect ArchitecturgSloman 2001), it is not very
much formalized. Maybe this is a good thing, ndiydrecause the colloquial style of
the description makes it much easier to understandhe casual reader, but also
because it lends flexibility to the interpretatiomhere a more rigid fixation of
Dérner’s concepts would be unnecessarily narrowpaathature. | have tried to keep
the presentation this way as well, by providinglarptions that are detailed enough
for setting out to sketch an implementation, yetidwg to restrict the descriptions
by narrow formalizations not warranted by the catistate of the theory.

In the presentation of particular algorithms | hae#&en some liberty in the
translation of the original diagrams into pseuddeoln some places, | have
corrected apparent slight mistakes; in others Ehaade minor changes to match the
algorithms more closely to their textual descriptian the book, or to clarify the
sequence of operations. My main goals were to aaderstanding and the removal
of redundancy while preserving the underlying idea.

1.2 An Overview of the Psi Theory and Psi Agents

“The Psis do not play theatre, they do not actifgdike
Weizenbaum'’s Eliza.” (99: 805)

Several prototypical implementations of Psi theaspects have been made available
by Ddrner, first as partial models of representatamd emotion, and latexgent
basedapproaches. These agents are systems acting onotte behalf and are
situated in a virtual environment, which providesnsations and means for
interaction.

Psi agents are usually little virtual steam velsiclghich depend on fuel and water
for their survival. When they are instantiated itle@ir environment, they have no
knowledge of how to attain these needs—they dawen know about the needs. All
they have is the simulacrum of a body that is eratbwith external sensors for
environmental features and internal sensors forphgsiological and cognitive
demands. Whenever the internal sensors signal wirggodeficit, for instance an
imminent lack of fuel to heat the boiler, whichniscessary to keep the turbines of the
agent running, a change in the cognitive systerestgace (called displeasure
signal). The agent is not necessagkperiencingthis displeasure signal—however,
the signal is creating a negative reinforcementicivihas an effect on learning, it
may change the relationship of the agent to theremwment by modulating its
perception, and it raises the activation of a nadibnal mechanism—it creates an
urge—to reduce the demand. Through random expboratnd goal-directed action,
the agent learns how to satisfy the particular deteai.e. which operations to
perform on the environment to attain a reductiothefdemand and thus the opposite
of a displeasure signal—a positive reinforcemenit®fearning, which also increases
its estimate of competence to handle similar ditaatin the future. (Actually, there
is a specifiademand for competenaes well.) Note, how the Psi theory distinguishes



between demands (actual needs of the system), (ndesh signal a demand) and
motives (which direct the system to take care ofsoeed).

Let us join a Psi agent on one of its adventuight after it has been created into its
little world. Impressions of environmental featurase pouring in, and an initial
conceptualization of the starting place is builheTplace may be described as a
meadow; it is characterized by grassy ground, Hsemace of trees, the neighborhood
of a little stream to the south, of impassable sackthe east and north and to a forest
towards the west. While the Psi agent is busy ekgjahings in its environment, it
consumes the better part of its fuel, and the smedemand is signaled as an urge
signal. This is not the only urge signal activehat time (the agent might need water
and some repairs too), and it is thrown into a oetitipn of motives. After a short
evaluation to determine the feasibility of findiagsource of energy the urge wins
against the competition, and the agent establigiesearch for fuel as its currently
active goal. More accurately put: the goal is thaiament of an event that consists in
reducing the fuel demand. By activating the reprg®n of this goal, and letting the
activation spread to associated preceding situstipossible remedies for the fuel
demand can be identified in the memory of the adenthe Psi agent’s world, these
might be the consumption of nuts or grains, which @sed to extract oil to fire the
boiler. A simple way of finding a plan that get® thgent into the presence of such
treats can be found by means of an associative myenstarting from the goal,
events are retrieved along the remembered sequehcagions and events—those
which in the past have lead to the goal situatibno such sequence (leading from
the current situation to the goal situation) isrfduthen the agent has to construct it,
for instance by laying out a route based on topagcal knowledge that has been
acquired in other contexts. In our case, the agemembers a place that is only a
short distance in the west: a clearing with hazbkre nuts were found in the past. A
chain of locomotive actions to get to that placeasily found, and the agent starts to
move. During the execution of the simple plan tovenavestwards and picking a few
nuts, the agent compares its environment and ttome of individual actions with
its expectation.

After moving into the forest, everything turns @ag expected. The trees at the
forest’s edge all stand where they were remembered)bstacles hinder progress,
and the clearing with the hazel tree can be seefan@away. A few moments later,
the agent arrives at its destination. But what apleasant surprise! Another agent
has visited the place since its last visit! Notyodid it ravish the hazel and did not
leave anything edible behind, it also mutilated flewers of the clearing and
changed the way the place looks. The latter isicsefft to fail the agent’s
expectations and increases its demand for the tieducf uncertainty. The former
leads to a complete failure of the plan, becauskielchas been found in the expected
location.

Because the demand for fuel is still active, a péam could be formed, but since
the agent has a new demand (the one for the reduatiuncertainty), and has had a
recent frustrating experience in attempting to eah its fuel tank, a new motive
takes over, and the agent starts exploring therinlpaAfter a while it has indeed
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determined in which way the destroyed flowers ldifkerent, and how the clearing
has changed. After updating its representationhef ¢clearing and having learnt
something about the appearance of mutilated floweesventually gets back to the
original motive. Again, a new plan is formed: thése field with sunflowers, which
can be reached by following the path further towlest, until a distinctive oak tree is
reached, and then cutting through the shrubs ithbound direction.

Meanwhile, the journey to the clearing and the erqilon did cost more fuel, and
the need to replenish the dwindling resources reore quite pressing, which
causes the agent to become somewhat agitatectréaises its activation. Such an
increase leads to a greater determination in pugstiie goal and reduces the time
that is dedicated to planning and pondering in faofaaction, and should amplify the
chances to get to the sunflowers before the agexstkb down. Unfortunately, the
price for diverting the cognitive resources to @gttonsists in a lower resolution of
planning and perception, and while the agent hastivels to the west, it ignores
most details of its environment. Even though it goesses faster, it misses the
landmark—the oak that marked the way to the surdtlswMWhen finally a digression
between the expectations and the environment @grezed, the agent has traveled
too far of its mark. Running out of fuel, it breadkswn, until the experimenter comes
to its rescue.

What | have just described is a setting very muike do those that can be observed
in a run of DOrner's computer simulation experingerwhat'’s interesting: if human
subjects are put into the same environment—giviregnt access to the same world as
the agent via a screen and a keyboard or joystickwam performance is very
similar to that of the model (02: 249-323, D6rneo2)10

10 |nitially, humans show a similar learning curvdtifaugh they are faster, if they have
intuitions about the possible uses of things thrat kmown from previous knowledge about
things like streams and nuts whereas the ageilipihas to guess). After a while, they tend
to develop a strategy to cope with the problem&gds them, and this strategy development
can be emulated by the agent. There seems toitnét ,ahowever, to what the current model is
capable of: Ddrner’s agents will formulate theianqd according to past successes and failures
and arrange their execution according to the ungehindividual demands and their estimated
competence at reaching a goal. Whenever humansygmt that (and in experiments Dérner’s
group noted that most of the time, they don’t), atalt toanalyzetheir strategies, actively
compare them, and even evaluate thedta strategiegthose that lead to finding a strategy in
the first place), they will be able to outperforine tagent model (Detje 1999).



Figure 1.1: Psi Island

What are Psi agents?—As we have seen, they arecleghnavigating their
environment in pursuit of resources and knowled®g.agents are not Tamagotchis
(see Kusahara 2003) or Eliza style facades (We@am#mb1966), they do not act “as
if”. (99: 805) Of course, they are computationalt they do not know about this, i.e.
if something is computed in them (like their hungege) they have no way of
knowing it:

“It [the Psi agent] would not know about the comgtitns that lead to Psi's
perception of hunger. The respective processesdveuhain hidden to it. Psi would
just have a motive ‘hunger’, and this would pres® ithe foreground, would get to
direct actions, or fail to do so. Perhaps, in coati@n to that motive, a specific
configuration or sequence of configurations of thedulator settings ‘activation’,
‘resolution level’, ‘concentration’ could arise athe result of a calculation that
incurs to the states of the factors influencing miedulators. But the machine would
not know that. It would denote certain successmfrgatterns its protocol memory as
‘anger’, ‘angst’, ‘rage’; but how those patterns |..come about, would remain
concealed to it."(99: 806)

Dérner's Psi agents (and the same holds true foraolaptations—the MicroPsi

agents) are tremendously simplified projectionsttef underlying (and sometimes
intangible) theoretical ideas. Currently they dot h@ow grammatical language

(which is a tenet of the theory), they have a kaliperceptual access to their world
(which is a virtual one), and they lack most seflactive abilities. And yet, Dérner

claims that they are already autonomous, know megdning, possess real motives,
and undergo real emotions. Furthermore: it mighpbssible to extend them along
the suggested lines into a full-blown construcsbnmodel of human emotion,

cognition, behavior, personality.
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To some readers, these claims may appear very Boldeven if one does not
subscribe to such an optimistic assessment of D8rnéeas, his concepts may
provide an extremely fruitful and inspiring framar further discussion.

The Psi theory relies on neural computation. Oniésajoals consists in showing that
all cognitive processes can be realized as neusaepses! On the other hand, it is
not a neurophysiological theory, or a theory of tinain. In fact, Dorner argues that
the actual brain structures might not be crucidhlyportant for understanding
cognition—because they belong to a different fuoral level than the cognitive
processes themselves. Dérner cites Norbert Bisslaofjument (Bischof 1996):

“In my view, to wait for the advances of neuropbi@jy or neuroanatomy is
even dangerous. It means to bind yourself to theerbasal science and to progress
in your own only so much as the advances of thentseiences allow. It means to
shackle yourself. What would have become of chegmikit had always waited for
the more basal science of physics? Indeed, | amthef opinion that the
neuroanatomist or neurophysiologist does not newdgshave to supply something
of substance if we are to speak about the mind.nét@llurgist, knowing everything
about metal molecules and their alloys, is not seadly the best authority with
regard to the functioning of car engines, even fiothese consist mainly of steel
and iron. It is perfectly possible to exercise adiional and accurate psychology
without knowing much about neurophysiology.

(...) Nevertheless, contact to the brain sciensegseful and advantageous. And
for this reason | will—whenever possible—reflecbmiprocesses in the brain, by
attempting to describe many mental processes ashguwcesses.(99: 22-23)

The following chapter deals with the details ofstlunctional theory of mental
processing and is structured as follows: First,wilt have an introductory look at
Dérner’s view on autonomy as the product of a cdsddeedback system controlling
an agent and his illustrative metaphor of a lileam vehicle (section 1.3). The Psi
theory starts from such a simple autonomous systech equips it with memory,
action control, motivation, emotion, planning anergeption until we arrive at a
complex cognitive agent architecture that attemjptsmodel aspects of human
psychology. The low level building blocks of suckystem are the subject of section
1.4: they are a simple set of neural elementsdRptess sensory input and actuator
output, abstracted concepts, relationships, schamdiscripts. The elements make up
the memory of the agent: section 1.5 discusses tmrking memory, world
representation, protocol memory, learning and abstn are represented in the
theory. The following part (1.6) focuses on pergaptafter explaining anticipation
and orientation in a dynamic environment, we de#h Wypothesis based perception,
which might be one of the core components of Désnéreory. Hypothesis based
perception enables a bottom-up/top-down processravbbjects are identified based
on hierarchical representations that have beenugtyd acquired in previous

11 To the computer scientist, this will not come dsigasurprise, since the neural processes in
question are obviously Turing computational.



experiences. We are looking at the acquisitiones perceptual object descriptions
and their representation in a situation image amglrtenactment using mental
simulation. Section 1.7 deals with strategies fuowledge management and explains
the idea of symbol grounding as found in Dornensory. The control of behavior
and the selection of action based on motivatiorttegenbject of section 1.8. Here, we
also define cognitive modulators and their rolehimitthe architecture, which leads us
into the field of emotion (section 1.9). Discussihiggher level cognition without
examining language might not prove very fruitfubchuse most planning, knowledge
management and retrieval strategies of human dognitly on it, but a shallow
approach on language is threatened by superficidlievertheless, even though the
Psi theory does not yet tackle language in sufficigetail, a short section (1.11)
points out how language is currently integrated which future avenues are opened
by the theory. Finally, we shall have a brief laakDorner’'s implementations (1.12)
of the emotion model (EmoRegul) and the Psi agémtn though these models are
relatively abstract and simplified and as such &ibrt of the goal of giving a
complete and detailed representation of any arelaunfan cognition, many of the
most enlightening ideas of the theory have beeiveldfrom them. Improvements in
the theory and in the understanding of human civgnfaiculties will be achieved by
further elaboration of the individual ideas, thagtual implementation and their test
in the form of executable computer models, botthwéspect to functionality of the
system itself and in comparison to human cognjpiedormance.

1.3 A simple autonomous vehicle

The simplest form of a mind that is able to cardlie constancy of
inner states is a feedback loop. (99: 31)

The Psi theory describes primarily the regulatiérnigh-level action in a cognitive
agent. The most basic example of autonomous actigulation is a feedback loop—
this is where a system starts to become somewtiepéndent of its environment (99:
30), and this is where the Psi theory starts. Nuwdefeedback-loops are deterministic
mechanisms. There is no contradiction between wdtéstic mechanisms and
adaptive, autonomous behavior: a system might adeeteministically) new
determinisms to become more adaptive.

Take an intelligent car, for example, that measusonly the driver’s steering
impulses and her braking actions, but also coesl#te traction of the wheels, fuel
usage and engine torques. Such a car could craaes’sl profiles, customizing the
reaction of the gas pedal, smoothing the steemngailoring the reaction of the
brakes depending on the prior behavior of the driVaus, additional feedback loops
decouple the driver from the immediate reactionthef car. Via adaptation, the car
becomes more autonomous. Of course, there is guilistance between a feedback
loop and a cognitive system.

Dérner introduces his theory in “Bauplan fur eiree®” incrementally. He starts out
with a very simple system: a Braitenberg vehicl®: (83; Braitenberg 1984). In its
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basic form, it consists of a robot with locomotasgilities (two independently driven
wheels) and a pair of light receptive sensors. Esatsor controls a wheel: if the
sensor gets a stronger signal, it speeds up tipecatge engine. If the sensors are
crosswise connected, then the sensor closer thgtitesource will give its stronger
signal to the more distant wheel, and consequettitéyyvehicle will turn towards the
light source.

movement patl

W

® light source

Figure 1.2: Braitenberg Vehicle

Conversely, if the sensors are wired in paralleéntthe sensor closer to the light
source will give its stronger signal to the clogdreel, thus turning the vehicle away.
Of course, the sensors do not need to be lighpteee—they could react to
humidity, to sound or to the smell of fuel. Wittetle simple mechanisms, and using
multiple sets of sensors, it is possible to builslyatem that shows simple behaviors
such as seeking out certain targets and avoidimgy et

The next step may consist in de-coupling the feekib@ops from the sensors and
introducing switches, which depend on internal ests¢nsors. For instance, if the
internal state sensors signal a lack of fuel, them switch for the fuel-seeking
behavior is turned on. If there is a lack of wathen the system might override the
fuel-seeking behavior and turn on the water-seefeegback loop. And if the system
has gotten too wet, it might inhibit the water-sagkbehavior and switch on a water-
avoiding behavior. All the time, it is crucial toamtain a homeostasis, a dynamic
balance of some control values in the face of iburbances created by changes in
the environment and by the agent’s actions.

In an organism, we may find a lot of similar conipans between current values
and target values. They are taking place all thne ton the physiological level, for
instance to regulate the body temperature, or ¢vellof glucose in the blood.
Differences between the current value from the efangplue are corrected using
feedback mechanisms (Dorner 1987; Miller, Galaraed Pribram 1960). But
modeling an organism using feedback loops doeseed to stop at the physiological
level—it applies to its psychological system asl\{Rischof 1969).

Dérner’s vehicle playfully starts out as a littkeam engine—with a boiler that needs
water and fuel for its operation, external sengorswvater and fuel, internal sensor-
actuator controls to maintain water level and presdevel of the boiler, and a

locomotive system driven by a pair of turbines.eich case, a sensor inhibits an
actuator whenever the desired level is reached.
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The activity of the internal sensors is measuredr dime. For example: if the
pressure in the boiler is too low, the agent mayt slown its locomotion for a while,
so pressure can build up again. If one of the gensignals a demand that remains
active over a long time (for instance the pressereainslow, because the water
reservoir is empty), then the system switches tlifferent behavior (for instance,
seeking out water-sources in the environment).

Water
Reservoir

Secondary

Regulation
Secondary

Regulation

Fuel

Reservoir

Accumulator Accumulator

Sensor for

; Sensor'for >
Regulator Boiler Pressure

Water Level

Figure 1.3: Feedback system control (99: 51)

Thus, the sensor now disinhibits an actuator ndy dnthe current value deviates

from the target value, but it also disinhibits a@®lary actuator that acts as a
fallback-system. The failure of the first system dstected by an accumulator
measuring the activity of the first actuator oviend. (This is done by making the

element self-activating, so its activation builgs aver time, and performing a reset
whenever the measured element becomes inactive. pdtumulator adds activation
to the secondary actuator that eventually becomnesgenough to switch it on.

The actual Psi agents do not just have a singleaddmbut many of them. The
demands are usually not directly connected to dilseaxecutable behavior, but are
signaled as urges, give rise to motives, leadeéddhmation of goals and result in the
execution of plans to fulfill these goals. Psi agelive in a world full of possible
successes and impending dangers. A success is dermdoced, and a danger
amounts to the possibility of an event that incesas need (99: 211).

To integrate multiple demands, the increase oredser of the activity of the
individual demand sensors is translated into pleasind distress signals (99: 47),
which in turn are used as reinforcement signalsafipetitive and aversive learning
(99: 50, 54). While the agents may store all tpeirceptions and actions, only those
events that are related to pleasure and displeaseneinforced and kept (99: 125).
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Figure 1.4: Simplified view of Dérner’s suggestedtatecture (02: 27)

In short, Psi agents operate on an environmenighaterpreted according to learned
expectations. They choose goals depending on gieede physiological and
cognitive urges and their expectations to fulfilese urges. Active motives and the
environment set a context within the agent’s menzory help to retrieve knowledge
for planning and perception. Actions are perfornaedording to plans which are
derived using previously acquired knowledge. Rssaftactions and events in the
environment are represented in a situation image make up new memories,
whereas the strength and contextual annotatiohesfet memories depends on their
motivational relevance. Perception, memory retli@ral chosen behavior strategies
are influenced by modulator parameters which mageausetting that can be
interpreted as an emotional configuration.

All these aspects of the Psi theory are going todwered in more detail down below.
But first, let’s look at the building blocks of @ifagent.

1.4 Representation of and for mental processes

The Psi theory suggests a neural representatidtsfagents. The atomic components
are threshold elements, which are used to consthietarchical schema
representations. The connection to the environisgmovided through special neural
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elements: sensor elements acting as input for madt@nd internal events, actuators
that trigger behaviors outside and inside the agesystem. Furthermore, there is a
number of technical elements to create new linksgiase or decrease activation in a
set of elements etc. By spreading activation alorig while switching the direction
of spreading according to sensor input and thevaobn of other elements, it is
possible to execute behavior programs and cortinadtsires of the agent.

In fact, all internal representations consist @St elements: sensory schemas for
recognizing and recalling objects, actuator schefom$ow-level plans and control
structures all share the same set of notations.

1.4.1  Neural representation

1.4.1.1 Neurons
The most basic element in Dorner’s representatisras kind of artificial neuron, a
threshold element. (99: 63; 02: 38-43) These neuane characterized by their

* activity A

« threshold valu&t

» amplification facto¥® Amp

* maximum activatiorMax

The output of a neuron is computed as
O =min(Max, AJAmp (1.1)

There are four types of neurons: activatory, irtbilyi, associative and
dissociative. While the latter two types only playole in creating, changing and
removing temporary links, the former are used tlwutate the activation of their
successor.

0

I wl.f
Og& }
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0, —=—> @—>
- w
0

n

Figure 1.5: Neural element

A neuronj is a successor of a neurgrif and only if there is a link with a weigtw;
from i to j. In each step, each neurorpropagates a valug,; =w, [OQ, if i is
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activatory, andv, ; =-w; [Q, if i is inhibitory. The activation gfis then calculated
as

A = max(O,Zivw. - ) (1.2)

Thus, neurons always have activations between OMag and they can either be
excitatory or inhibitory, but not both. Usually,tmot alwaysMax will be 1.

1.4.1.2 Associators and dissociators
Associative and dissociative neurons (99: 80-81.38241) rely on further properties,
which are globally defined for an agent or for acfeneurons within that agent:

- learning constarit

- dissociative constam

- decay constark

- decay threshold

When an associative neuron (associatoy transmits activation onto another

neuronj andj is active itself, then the link weights;; betweenj and all active
neurons are strengthened:

2
Mjew = (\/ W,j + A A ésociaror Vgssociator j I) (13)
Note that the strengthening usually starts sloahd then gets faster, because of the

square root term. Yet it is possible to set thegiveimmediately to 1, by setting the
activity of the associator to a very high valuecfsas 1000).

If the associator is inactive, then the links uiggea decay:
W = max(O,V\(ZYj - K) Jifw, <T, w  else (1.4)

Thus, only those links that are below a thresiioltte weakened. (The value kfis
typically quite small, such as 0.05.)

Dissociative neurons are inverse associatorselfdibsociator is active, then the link
weights are updated as

M?W = \/maX( O’V\(Z,j - A e‘ 'gksociator VMissociator j I:) (15)

Dérner justifies associators with assumptions berzagothai (Szenthagothai 1968)
and Eccles (Eccles 1972) and results from the 1988en it could be shown that
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receiving neurons can (based on postsynaptic emnissf nitrous oxide) trigger
presynaptic neurons to increase their reservoitrarfismitter substances (Spitzer,
1996, Bliss and Collingridge, 1993). Thus, assocgaprobably correspond to actual
structures in the brain. Dissociators are completgbeculative and have been
introduced for convenience (02: 42).

With these elements, it is possible to set up chaihneurons that are executed by
spreading activation and switched using threshdlidss also possible to perform
some basic set operations, like union and intamect

Naturally, it is also possible to create simplediéerward networks (perceptrons)
that perform pattern recognition on the input & #gent (99: 75).

1.4.1.3 Cortex fields, activators, inhibitors and r  egisters

The next important element of Dorner’s neural neksanay be called eortex field
(“Cortex”) (Dorner 1988/89; 02: 70). A cortex field is essalhyia set of neurons that
are subject to the summary actions of associatdissociators, activators and
inhibitors.

A general activatoiis simply an activatory neuron connected to ahednts of a
cortex, likewise, ajeneral inhibitoris an inhibitory neuron connected to all elements
of a cortex. (02: 69-72)

A neuron that is not part of the currently regardedex field is called aegister
(02: 71). Neural programs are chains of registeas tall associators, dissociators,
activators and inhibitors. (These “calls” are jumttivations of the respective
elements.) In the course of neural execution, efesnén the cortex field are
summarily linked to specific registers which arertpaf the executed chain of
neurons. Then, operations are performed on thefoydé¢hey are unlinked again.
(02: 42,70)

1.4.1.4 Sensor neurons and motor neurons

Sensors (02: 50) and actuators (“Aktoren”; 02: &4 neurons that provide the
system’s interface to the outside world. Sensoiime active if triggered by the
environment, and actuators attempt to perform a&ipeoperation on the outside
world, when activated. In practice, an actuatorhhizge used as a shortcut to express
an elaborate actor schema (such as gripping appaaihereas actual elementary
actuators are tantamount to muscle innervations wndld provide only very
rudimentary operations.

1.4.1.5 Sensors specific to cortex fields
Branches in the programs depend on sensory inptiheéochains of neurons: by
receiving additional activation from a sensor neuractivation can overcome a

15 Dissociators may be useful to un-link sets of teragly connected neural elements within
Dérner’'s framework, but they might not need to havéunctional equivalent in the brain.

Instead, it might suffice if temporary associatioapidly decay if they are not renewed. Thus,
association would require a periodic or constafmesting of the link-weights, and dissociation
may be achieved by a period of de-activation ofassociated elements.
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threshold, such that neurons act very similar aogistors. The opposite can happen
as well, a sensor neuron might inhibit a brancth@activation program. Of course,
sensors do not have to do this directly, their &ligmight be pre-processed by other
neural structures.

While many of the sensor neurons will act as pathe interface of the agent to
the outside world, including physiological parametésuch as the demands for fuel
and water), some will have to provide informatidioat internal states of the agent’s
cognition. With respect to cortex fields, there seasors that signal if more than one
or more than zero elements in the cortex are a¢fi2e72). These sensors are used in
several of Dorner’'s suggested algorithms, for imstato aid in selecting perceptual
hypothesis from the neural structures stored inrtéer field. Strictly speaking, they
are not necessary. Rather, they are a conveniericahto linking all neurons within
a cortex field each to an amplifier neuro1 Amp=10'° or similar), which
transforms the activation into a value of 0 orrid ghen connecting all amplifiers to a
register with a threshold that amounts to the s@iall@®lements, or to the sum of all
elements —1.

1.4.1.6 Quads
When working with spreading activation networkgj\ation should be directionally
constrained to avoid unwanted recurrences, whiclghtniresult in unforeseen
feedback loops. Also, for many purposes it is @dédé to build hierarchical networks.
This is where quads, which are certain combinati@nsimple neurons, come into
play (02: 44-50).

To build hierarchical networks of neural elemeiftsiy kinds of links are being used.
Two are erecting the ‘vertical direction’ - theyeassentially partonomic relations:
- sul This link type stands for “has-part”. If an elem@& has asublink to an
elementb, it means thaa has the part (or sometimes the propéesty)
- sur. This is the inverse relation suband means “is-part”. i is sur-linked tob,
thena is a part (or sometimes a property)of
The two remaining link types are spanning the ‘hamial direction”:
- por (from latinporro): Thepor-relation is used as a causal (subjunctive), teaipor
or structural ordering relation between adjaceatents. Ifa has apor-link to b,
thena precedes (and sometimes leads to or even causes)
- ret (from latinretro): Again, this is the inverse relationpor. If there is aet-link
betweera andb, thena succeeds (and sometimes is causel) by
Usually, if two elements are connected byaa-link or sublink in one direction,
there will be a link of the inverse type in the ethdirection too. Still, the inverse
direction is not obsolete, because the links aranti® transmit spreading activation.
When activation is transmitted through a link, theposite direction should not
automatically be active as well, so the spreadctif’ation can be directional. Also,
the weight of the reciprocal links might differ.

Technically, this can be realized by representicheslement by a central neuron
with a maximum output activation below 1.0, andrfeeurons f§or, ret, suh sur)
connected to its output. The connected neurons leaed a threshold value of 1.0, so
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that the central neuron can not propagate its ain through the surrounding
neurons, if these do not receive additional adtvat

This additional activation is supplied bysaecific activatorneuron. There are
specific activator neurons for each of the fouediions; thegor-activator connects to
all por-neurons in the cortex, thet-activator to allret-neurons, and so on. If the
specific activator for a direction is active, thentral neuron might overcome the
threshold of the corresponding connected neurorpamplagate its activation into the
respective direction. (Specific activators sholike general activators, operate on a
complete cortex field at a time.)

Figure 1.7: Quad—arrangement of nodes as a bagsiesentational unit

These elements of five neurons are catiedds. A quada may be connected to a
quadb by linking the output of @or-neuronret-neuron,subneuron orsur-neuron of
a to the input of the central neurontof
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Activator Activator  Activator  Activator
por ret sub sur

Figure 1.8: Quads in a cortex field, with direcabactivators

When we discuss neural scripts, the basic elentefésred to are usually quads. For
some purposes (i.e. if no conditional spreadingvatibn is wanted), the basic

elements will be single neurons. To simplify thingsill refer to both quads and

individual neurons asodeswhen they are used as functional uffts.

18 The link types are likened #ristoteliancausae(02: 47-48) Por alludes tocausa finalis(a
relation pointing to outcomes and purposes},to causa efficienga relation pointing out
things that lead to the thing or event in questi@ur to causa formalis(which can be
interpreted as relating to what the thing or ewakes a part in), ansubto causa materialis
(which relates to material components). In realitgwever, semantics is not determined by
labels that one might stick to the link types, byttheir use. In sensor schemas, episodic
schemas and behavior programest andret are simply ordering relations that mark successors
and predecessors. Sometimes—but not always—tlugriglated with causatiol®ubandsur

are used in hierarchical sensor schemas to idemaifis, in hierarchical behavior programs to
link higher levels with macros (re-usable actiomaepts which are indeed parts of the higher
behavior concepts), and in more general objectrsabéo connect objects with their properties
(has-attribute relationship). Thus, | think thabimler to expand the semantics of the link types
towards Aristoteles’ concepts of causal interrelai additional context would have to be
supplied.
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1.4.2 Partonomies

The foremost purpose of quads is the constructiopastonomic hierarchiesor
partonomies Here, a concept is related to subordinate coscépt“has-part” links
(i.e. sub, and these parts are in turn connected to tlhspier®rdinate concepts using
“is-part-of” links (sur). Thus, a concept may be defined with respece&buies that
are treated as parts, and superordinate concegthiétve part in.
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brow eye
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sensors

Figure 1.9: Partonomic structure

At each level of the hierarchy, nodes may be iptated with their siblings to denote
spatial, temporal or simply execution order relaioSuch orderings are expressed
with por (and withret in the inverse direction). As we will explain stigy por-links
may be annotated with spatial and temporal infoionat

Por-ordered nodes can be interpreted as a level narsigicalscripts each node
is executed by executing imiblinked children, before execution continues at the
por-linked successor. At the lowest level, the quaatdrichies bottom out in sensors
and actuators. Thus, partonomies in Psi agents alsy be used to represent
hierarchical plans It is even possible to link a sub-tree at mudtipbsitions into the
hierarchy. This sub-tree then acts likemacro (as Dorner calls it) and aids in
conserving memory’ (99: 189)

Note that Dérner usually only connects the firsteq“Kopfknoten) in apor-
linked chain to the parent. This reduces the nunolbdinks necessary. However, to
perform backtracking in such a script, the executims to trace back to the first

171 multiple features with identical representasicare referenced several times, a special case
of a binding problem might occur. Especially if arfpnomy is interpreted as a plan executed
in parallel, the question how to handle multiplstamces of parts arises.
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element of the node chain, and the fact glatlements of the chain are parts of the
parent is not emphasizé#l.

1.4.3 Alternatives and subjunctions

Por-linking a chain of nodes that aseib/surlinked to a common parent allows for
expressing a subjunction. Nodespor-chains of nodes that share a commah/sur
linked parent and that are themselaespor-connected, are interpreted as disjunctive
alternatives A node that has alternative parts or successorealled ahollow
(“Hohlstelle”) due to its looseness in the resugtispecification. Hollows are
important to generalize representations and tcesgmt abstractions. (99: 142-143)
There are two kinds of hollows:

- alternative successions (branchpay-chains) expresstructural abstractness

- alternative elements (branchiagblinks) expres&lement abstractness

a) b)

por por

Figure 1.10: structural abstractness vs. elemesttadiness

1.4.4 Sensory schemas

Sensory schemas are partonomic hierarchies thegseqt the sensory (for instance
visual) make-up of an object. Here, objects aresiclamed to be made up of sub-
objects, these again of sub-objects and so on. fi&ionship is expressed by
subisur linkages. On the lowest level of the hierarchy aemsor elements that
correspond to perceptible features.

Sensory schemas are the way descriptions of ginstr objects are represented.
They are not images of things; rather, they @escriptions of how to recognize
things.

For visual or tactile descriptions, it is often iogsible to access multiple features
simultaneously, because the sensors are spatialiyriated. Thus, for visual
descriptions, a retina might have to be moved, fandactile description, a tactile
sensor needs to be repositioned. This is done tanging the sensory events on a
por-chain with intermittent activations of retinal noless etc. This intermittent
activation may be translated into horizontal andtiwal components and used as
spatial annotationson the por-links between the sensory events. These spatial
annotations are just shorthand for the actionsribatl to be performed in order to get
a sensor from one spatial position to ano#¢02: 51)

18 This is not completely dissimilar to Anderson’satmn of lists in ACT* (Anderson 1987):
here, all elements are partonomically linked topgheent, but usually only the first and the last
one have strong link weights.

19 1t might seem strange thaior-links are also used to denote spatial (and nosatju
relationships in sensor schemas. This is due tdatttethat a sensor schema is in fact less an
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By using alternatives (“hollows”, see above), ipisssible to create less specific
sensory representations.

face

nose

ojllelellle

sensors

Figure 1.11: Sensor schema to describe a cart@en fa

In current Psi agents, sensor schemas are puiphénd are organized as situation
descriptions, consisting of objects, consistingfedtures with Gestalt properties,
which in turn are made up of line segments, bothgnout in sensors that act as
detectors for horizontal, vertical and diagonal epixarrangements. This is a
simplification and should probably be treated withimss of generality with respect
to the theory. The lower levels might refer to dagurequencies in general, for
instance, and the number of levels in the hierardgds not to be fixed.

1.45 Effector/action schemas

An action schema can be anything from a low-levetanbehavior to a full-blown
script, for instance a hierarchical algorithm fasiting a restaurant (Schank and
Abelson 1977; 99: 106). Just like sensor schemagraschemas are partonomic
hierarchies. Every node represents an action akederel, which is made up of
(possibly alternativepor-linked chains of sub-actions. At the lowest lewélthe
hierarchy, action schemas bottom out in actuatehéch are performing operations
on the agent’s environment or the agent itself E2256).

image then a script that defines how to recognizelgect. Thus, the features in the sensor
schema can be interpreted as a subjunctive seqoénbservation events (02: 50-53).
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Alternatives in an action schema should be hanbiettying them (concurrently
or subsequently) until one succeeds or none is leke in sensor schemas,
alternatives lend more generality to the actiorcdpsons.

1.4.6 Triplets

Triplets have been described by Friedhart Klix @©@%nd are essentially
arrangements of

- a sensor schema (pre-conditions, “condition schgma”

- a subsequent motor schema (action, effector)

- and a final sensor schema (post-conditions, expent) (99: 97)
Triplets are helpful in planning armtobationary action(*Probehandeln”) (see Klix
92, p. 75).

Pre-conditional sensor schemas are essentiallyipgsos of those aspects of the
world that need to be present for the action schemaork. The post-conditional
sensor schema describes the state of the world thigeapplication of the action
schema. By matching pre-conditions and post-caomti it is possible to “domino-
chain” triplets into longer behavior sequences—athoe that is used for the
description of chained reflexes (Braines, Napalkowl Swetschinski 1964). For an
example, imagine a script to grab a teacup. Thightntonsist of chained behavior
loops: one to locate and assess the teacup, ammtbeto move the hand towards it
until the proper distance is reached, a furthertongpen the hand to a suitable span,
then a loop to close the fingers until the tacfdéedback reports an appropriate
pressure and hold, followed by another loop tatié cup (99: 96).

In cognitive psychology, models are often basedporduction rules (Post 1921;
Newell 1973); a production describes how to behawvaer which circumstances in
which way (99: 103). When comparing triplets to quotions, a few differences
immediately catch the eye:

Productions are usually defined in a form such peod:= if (goal=X and
precondition=Y) then Z” (see Anderson 83, p. 8darexample). Thus, conditions of
productions are made up of two elements, a goalaaprecondition. In triplets, the
goal does not have to be known. (The outcome repted in the post-conditional
schema can be very general and is not necessagityald) This might be seen as an
advantage of triplets over productions, since ai-morld environments, actions may
have too many possible outcomes to consider thenest relate them to goals. Note
that like many researchers in cognitive modelingdérson mainly examinesental
tasks like addition. These tasks are usually nairatterized by many possible
outcomes (99: 105), so the disadvantages of primhsctio not come into play.

Triplets are often not such clean entities as sstggeabove. Dérner himself mentions
(99: 138) that mixing of actions and sensing isessary, and thus sensor schemas
and effector schemas will be heavily interleavedfdct, most action parts of any
given script will contain sensory checks, and nsaestsory scripts will embed actions
that are necessary to move sensors accordinghyjhigher levels of scripts, a sense
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action such as observing an object might requieeatient to take a different position,
open a window and so on, while an action like opgna window will require
employing a vast number of sensory schemas.

1.4.7 Space and time

Sensor and action schemas may express spatia¢anpotal relationships as well. As
a shorthand, they might be noted as additional tatinas of por/ret links. This,
however, is just an abbreviation of a mechanisrhandle these relationships with
neural operators: (99: 99; 02: 51)

Space:For spatial description within visual schemas, abite retina” may be
used. In that case, the retina will be controllgdastuators (e.g. for vertical and
horizontal deflection). By changing the deflectioh the retina between sensory
events, a spatial arrangement of features carabedr(99: 138-141). Thus, the agent
will expect stimuli at certain positions. By usitige shorthand notation of annotating
por-links between spatially arranged sensory featungth pairs of numbers
representing the deflections, further mechanismg lbeaadded, for instance to move
the retina inversely, if the script is parsed im thpposing ret) direction, or to
cumulate retinal movements when ignoring individiggtures because of occlusions
or to speed up the recognition process.

Where the moving retina may cover short distancepatial representation, large
distances have to be handled by other means. Téwt agght move, for instance.
There is no essential difference between the dpeglationships in the sensory
description of a small object and the relationsMeen places on a topological map of
the agent’s environment.

Time: Spatially distant events can be represented withotated sensory
schemas, and so can events that are distant in. tWwerking with these
representations is a different matter, because tiseusually no actuator to move an
agent back and forth in time. The agent will simpgve to wait for the specified
amount of time.

A general implementation of a waiting mechanism hhigrove to be no trivial
matter, as it involves conditional concurrency #meluse of multiple internal clocks.

Doérner suggests a simple mechanism to measure uihile storing events in a
protocol chain: between events, a self-activatinodenincreases its activation. When
the next event takes place, the resulting actigaioinverted and then used as the
link weight on thepor-connection between the events in the protocol {ag@er
down below for details on protocol memory). Thuke tlink weight between
immediately subsequent events will be strong, wthile weight between events
distant in time will be weak. By choosing an appraie way of inverting the
activation of the time-measuring element, the timeasure might be linear or
logarithmic. Using link weights to represent tintgervals has several advantages:
Events that are close to each other tend to bepgbby strong links, and since
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protocols may decay over time, distant groups oéné&v may be treated as
unrelatec®® (99: 113)

To read time from a protocol chain, the measurirag@ss is simply inversed: the
link weight is read by measuring the differencaativation that can spread from the
predecessor to the successor element of the pltotdw@in, then inverted and
compared against the activation that is built uminascade of recurrent threshold
elements. When the activation in the cascade rachee the same level, a similar
amount of time will have passed. (99: 115)

ProcessesTo represent dynamic processes, such as the vispadsentation of
the repeated movements of a walking animal, Désnggests storing key frames in a
loop (99: 188%1

1.4.8 Basic relationships

For the description of situations, a number of basiations and entities are described
by Dorner. Some are elementary and straightforwsudh as the partonomic and
causal relations. Others are represented as afispamiangement of causal and
partonomic relationships, such as the instrumeetation. Specific relationships are
explained in more detail when it comes to behasg#&lection (appetence, aversion)
and language, but some are just being mentioned nahdevisited in Dorner’s
writing. The basic relationships are:

- causal relationsThey connect causes and effects; causes aresebamalways
precede the effected events. (Note that in thisrpmetation, in the case of
multiple causation, the cause must be an event rogdef a disjunction of
events.) According the semantics of links (02: 33-%hey will usually be
denoted byor-links (orret-links in the inverse direction). (99: 259)

- spatial relations These are relations between elements that siha@resame
spatially annotategor-linked chain of a sensor schema. As explained @bitne
spatial annotations are shorthand to describe aement action that has to be
performed by a (physical or mental) scanning sefison the position where the
first element can be observagithe position of the other element. (99: 138-141)

- temporal relations Temporal relations are temporally annotatedr-links
between elements of an episodic schema. (Dornegests that the link weights
could be used as annotation, where strong weidbtsfys short intervals and
thus more strongly connected events.) (99: 113)

20 The strength of links between elements of a patebain is normally used to encode

frequency/relevance of the relationship. This migitérfere with using the link weight as a

time measure. It is probably better to utilize eosmlary link or a separate link annotation.

21 Clearly, Dérner remains fragmentary here. Becauseathiual sensory perception will not

deliver the same key frames as originally storethesinterpolation process will have to take
place. Furthermore, with the implementation of leapsing spreading activation, practical

difficulties arise, because spreading activatiomeiourrencies tends to be difficult to handle.
On the other hand, there are less intuitive, butemobust methods available to represent
dynamic motion perception with neural representegtiddrner’'s suggestion mainly serves the
purpose of illustration.
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- instrumental relations They denote the relationship between an effecting
behavior and two world states, that is, when amigetively manages to change
affairs from one state to the next, tHeowit did so, the action that allowed it to
do it, is connected with an instrumental relatiopstccording to the triplet
concept, an instrumental relation would beulink from a protocol element
(denoting the change-event) onto a behavior progoarasur-link in the inverse
direction).

- final relations They connect goal-oriented behaviorsuioy, what forthey took
place, i.e. the situation effected by them. Therprobably ndirect link in the
notation to denote this, rather, the final relatmmounts to aur-link to the
change event, followed byor-link to the caused event (orret-link followed
by asublink in the opposite direction).

- actor-instrument relationsThey point outvho/whathas caused somethimgth
what To that end, they link between a representatib@roagent in a given
situation and its action (probalgyb) (99: 261). An agent is a role that would be
identified by something apparently acting on itsndeehalf, something that it is
not an instrument in the given context (99: 260).

- partonomic relations As seen above, they relate elementary propewiés
objects, elements with sets and socks with drawinsy are recognizable by
sur-links between object schemas gtz links for the opposite direction).

- is-a relations This is the relationship between objects and ttegiegories, where
the category is a more abstract object that alltaveiccommodate the more
concrete one, but not vice versa (99: 265). | velihere is no special link type
to denote this kind of compatibility (although thelationship is clearly
mentioned in (Schaub 1993) as “Abstrakt-Konkretafleh”), and it does not
seem quite acceptable to ussuelink or sublink (even though categories can
be seen as derived from sets). It would be possintevever, to define a
compatibility checking behavior program that redaga for pairs of objects
whether they are in a is-a relation to each otheould then be marked by using
symbols, for instance with word-labels (which areperties of objects): there
would be a word-label linked tooththe object and its category, and another one
linked only to the object, but not to the category. This ishably what Dérner
means when he suggests that word-labels could &fellus express categorial
relationships (99: 267).

- co-hyponymy relationg“co-adjunctions”). Two elements that are mutually
exclusive sub-categories of a given category atlecca@o-adjunctions They
partition the space of a given category into egaivee classes (99: 208).

- similarity relationsare not explicitly defined but mentioned. Simitgrconsists
in partial identity; by comparing objects with aMaesolution level (see below),
the dissimilar features might be ignored - the Eindbjects seem equal then (99:
222). Dorner’s account of computing identity not dylistance metric, but as a
function of matching features might be compatibde ihstance with Tversky
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(1977). Algorithms for obtaining similarity meassréave been hinted at by

Darner, but not been discussed in defil.

- appetence relationsThese argor-links between a need indicator (see below)

and an action alleviating the related demand (99).3

- aversive relationsconnect a situation schema that causes the incgea$ a

demand with the respective need indicapmr) (99: 307).

Furthermore, in the work of Johanna Kiinzel (20@4#h)ich aimed at enhancing
Psi agents with language, a relationship betweetonil descriptions and language
elements was introduced; the respective link typese calledpic and lan and
connected quads representing sensory conceptsottign quads representing word
schemas.

1.5 Memory organization

The working memory of Psi agents consists of

- an image of theurrent situation

- the expected future evenexpectation horizon

- the remembered pagirptoco) and

- the active motives, including goals and relatedavedr programs iftention

memory (99: 516).

Before these elements can be discussed in detailwillveevisit them in the sections
dealing with perception (1.6) and motivation (1.8&t-us introduce the different
kinds of representation.

Earlier work from Doérner’'s group (Gerdes and Stobimeider 1991) describes the
memory as consisting of three interlinked structure

- The sensory networktoresdeclarative knowledgeschemas representing images,
objects, events and situations as hierarchicatdpamical) structures.

- The motor network contains procedural knowledgeby way of hierarchical
behavior programs.

- Finally, themotivational networkhandles states of demands (deprivations) of the
system, which can be simple (like the one-dimeraiphysiological demands) or
complex compounds (like many social demands).

However, these networks are not separate—theytramegdy interconnected (Dorner,
Schaub, Straudel and Strohschneider 1988, p. 220yeneral, all the knowledge of
PSl is stored in one network, call&ible-hierarchy” (Gerdes, Strohschneider, 1991)

1.5.1 Episodic schemas

Episodic schemas (“Geschehnis-Schemata”) stanaHhains of events without the
direct interception of the agent, as opposed tatieh schemas. Episodic schemas

22 The idea of capturing similarity with partial idép alludes to Rudolf Carnap and indeed
one of the chapters is named after Carnap’s famook tDer logische Aufbau der Welt”
(1928).
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are partonomic hierarchies and include sensorymsabethat are connected with
(temporally annotatedjor-links to indicate their sequential nature. Episcgtthemas
can branch to convey multiple possible outcomesnodvent (structural abstractness).
These branches are acquired by witnessing diffemritomes of events and
integrating them within the same event chain (92)1

1.5.2 Behavior programs

Behavior programs (“Aktions-Schemata”) add actian the episodes; they are
episodic schemas incorporating actions of the agself. They consist of chained
triplets: sensory descriptions of world states fatwed (por-linked) by possible
actions of the agent. Behavior programs the way &gnts store procedural
knowledge.

Like episodic schemas, behavior programs are [ukies of por-linked
sequences. At the lowest level, they refer to sgrased motor events.

The hierarchical structure of behavior programs @sakk possible to express
complex plans with different levels of abstractiofiem primitive motor skills to
abstract actions consisting of multiple realizasioBy exchanging links between
nodes at higher levels of abstraction, knowledge loa rearranged, and symbolic
planning might be realized. (99: 129; 02: 54-56)

Through trial-and-error learning, Psi agents adthbhes to behavior programs. If
a part of a behavior programs gets into disuselitiis to it decay over time, until
this part is removed altogether. (99: 130, 131)

Dorner suggests a simple algorithm to execute hiehavograms; i.e. to perform a
plan, it may be instantiated in some cortex figlslse above) and then accessed by
another behavior program acting as a control siradb oversee its executiéh.

23 |t might be desirable to execute some behaviograras without the use of an external
control structure. Under certain circumstances)ight be possible to do this just by spreading
activation, however, for backtracking, control infation will have to be stored in the form of
a stack or as additional states within the progetaments.
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“Activate behavior program”
1. 1Initialize by putting first program node (‘interneuron’) into 77st
2. until 77ist is empty:
3. choose element from 77ist
4. if element is a motor node:
5. activate element
6. empty 7ist
7. ut all direct successors (‘por’-linked nodes) of element into 7ist
8. else (i.e. element is a sensor noéé):
9. if perception of element is successful:
10. empty Jist
11. put all direct successors of element into Tist
12. else (i.e. expected element could not be perceived):
13. if 7T7st is empty (i.e. no alternative expectations):
14. end with failure
15. repeat (until 77st is empty)
16. end with success

Algorithm to execute behavior program (99: 100, #¢)

The algorithm simply chooses the next connectechetds. If the element amounts to
a sensory schema, it is validated according tolaei sensory information. If the
element is a motor schema, it is activede@he validation of sensory schemas might
fail; in this case, alternatives are checked. Iffumdher alternatives are available, the
execution of the behavior program fails.

1.5.3 Protocol memory

While the agent interacts with its environmentratords its history, that is: the
situations/events it encountered and the actiongeiformed, in the form of a
protocol. The protocol memory is made up of a chafirhierarchical situational
descriptions.

Because the protocol memory is an assembly of hehpvograms and episodic
schemas, it consists of hierarchies as well. Loxellsensory information and motor
behavior is included by referencing it partonomicdtom higher, more abstract
levels in the protocol scripts (99: 89). At eackele successive elements in the
protocol chain argor/ret linked.

24 To be useful for hierarchical scripts, the aldoritshould traverse sub-schemas recursively,
and a mechanism for back-tracing should be added.
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Figure 1.12: Schematic protocol (99: 51)

Protocols are acquired by copying the currsitiation image(see below) to the
present head of the protocol chain. Of courses itat necessary to literally copy all
the details of the situational descriptions; sibatimages are essentially just
concepts that holdub'sur references to the individual objects. It is suéfit to copy
only these sub-references, which in turn activater@rchical) object descriptions in
long term memory. (99: 109-112) Still, for eactuatton at least one new neuron has
to be recruited. A “plastic cortex” that holds d&fle protocol nodes serves this
purpose; whenever a further node is required, fitished from the least-used nodes
in the pool. (Doérner calls this process mockingthe' polonaise of memory”
(“Gedachtnispolonaise”), because of the way theégoa chain subsequently snakes
and crawls through the protocol cortex field.) (292)

The protocol is the main source for the learninghef Psi agents. This is achieved by
a way ofretro-gradient reinforcemer(triicklaufige Afferentiation”, see Lurija 1992,
p. 88; 99: 89). Whenever the agent encounters antakiat is accompanied by a rise
or decrease in a demand (i.e. the agent is subljézte displeasure or pleasure signal,
see above), it strengthens the links to the imnteligoreceding protocol elements.
This strengthening also applies, but to a lessgrede to more distant predecessors,
until at last it tapers out.

After a motivationally relevant event, activatios propagated backwards along
the protocol chain, andubwards into the hierarchical situational descripsichat
make up its content. Along with the propagatioractivation, links are strengthened
according to

W' = min maxWeith(J W+ ReinforcementSig)‘f%l (1.6)
where the value of th&keinforcementSignais derived from the propagated
strength of the demand change (02: 160-163). Bectdugsgrowth of the link weights

depends on the square root of the initial link vagigonnections are increased slowly
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at first and quicker, if the link is already quis¢rong. Furthermore, because the
propagated activation becomes weaker with eveny efespreading, the effect of

reinforcement ceases after a few elements. Hemeestrength and depth of the
reinforcement taking place depends on the famijiaand on the importance (the

motivational relevance) of the recorded event (d®8-121).

This groups aversive and appetitive event sequertbas is, successions of
incidents that have lead to a negative or posiiviecome. Based on this knowledge,
the agent will decide on what to avoid, and whasttive for (99: 301f.). Of course,
conflicts will still remain possible, for instanaghen an appetitive sequence (like
devouring tasty food) eventually leads to an aversituation later on (like punishing
stomach cramps). The actual decision will dependhendepth of the anticipated
expectation horizon (i.e. the depth of the memahesas considered for planning at
the time of decision making), and on the curregiency of motives (avoidance of
starvation vs. avoidance of pain). The mechanisfrdamning and decision making
will be discussed in more detail further down below

Besides retro-gradient reinforcement, Psi agentawdron another learning
mechanismstrengthening by usé&Vhen revisiting sequences of events and actions
(see expectation horizordown below) or re-executing plans, the particulaks
weights are increased (02: 164) according to:

W= ((w, + L) )

At the same time, the protocol is subject to a gahdiecay of the links (see the
section about associators and dissociators), urilesslink weights are above a
“forgetting threshold”T. Over time, this leads to a fragmentation of thetqcol
chain: the history of the agent will be recorded asset of loosely or even
unconnected “islands” (99: 116) that may be usedtifie retrieval of episodic
schemas and behavior programs in the future (9811

Because not only thpor-links between successive elements decay, butthéso
sublinks to parts of descriptions of situations andians unused features may
disappear over time. This leads to scabstractionby forgetting of detail (99: 126,
183, 222), because events that looked differeffirgtt may become similar after a
time, and only those features are put into regaatl hear a relevance to the particular
outcome.

The strengthening-decay mechanism is able to disa®lated events well if they
frequently co-occur and provided they are not spaxggart by intervals of different
intermittent events. Obviously, a weakness of #tiseme is its inability to discover
relations between events that are far apart in.timnag-term dependencies are just
not related between each other in memory. Dérntsnihis (99: 126) but points out
that this might not be a flaw of the model, butraljem of human performance as
well. Humans may overcome these restrictions oglydiating distant events using
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other strategies: the events are arranged as siveedements using hierarchies, or
they are organized by addressing them with langéage

Early in their history of learning, the Psi agentid store predominantly low-level
representations of actions in the protocol, becduegarchies, in which low-level
scripts have been grouped into super-concepts, havdo be formed. With the
formation of abstractions (like a concept that saripes a complete visit to a
restaurant), maintaining the protocol memory becommre efficient. Instead of
representing individual actions, their higher-leabbktractions are stored. Thus, with
growing age of the individual, automatisms andptsriend to be highly consolidated
and cover most events, and consequently, the mtmts increasingly sparse (99:
118).

1.5.4 Abstraction and analogical reasoning

Psi agents establish the factuality of an objectitiation by attempting to verify its
(sensory) schema. The more features are definethantarrower they are specified,
the more constrains apply. To capture things witfergnces in their features within
the same schema, two mechanisms can be employedir3itis an abstraction by the
neglect of detail (99: 135); different things wilien “look” identical. The other
method is the use of alternative sensory descriptizvhich are subsumed within the
same sensory schema. Both methods amount to ttoeliiction ofhollows/cavities
or open slotg“Hohlstellen”) into a schema. The extreme case $shema that has no
features gublinked sub schemas) at all, such a completely ratistschema
(“Hohlschema”) would match to absolutely everyth#i¢99: 143)

To match features with continuous values, Dornso @uggests the introduction
of some kind ofrange abstractnes§'Abweichungsabstraktheit”): here, spatial and
temporal annotations should not only match wherctiyat a target value, but also

25 For example, the relation between planting a seetl harvesting a plant is probably not
discovered directly by examining the unaltered ot of the individuals everyday-affairs, but
by re-arranging and grouping actions into a hidnanvith respect to the location, the seasons
and so on. In order to conceptualize the plantiegssen as one kind of event, and the
harvesting season as another, successive everihdiliual will need to build categories of
large time-spans. When looking at the protocol nmgmwith respect to actions at a given
location and according to such time-spans, planging harvesting may indeed appear to be
neighboring events and treated as such.

26 Ddrner mentions several ways of “relaxing” schenths: addition of alternative features,

the removal of features, the random or heuristigieat of features (to speed up recognition)
and special solutions to increase the limits withwhich foveal sensors accept spatially
distributed features. But because hierarchical sesshemas are in principle multi layer

perceptrons, further ways of loosening the constsadf sensory descriptions are available: the
use of distributed representations and variableghsi allows for fuzziness in the feature

acceptance and in the definition of the featuresngelves. It might also be useful to change
the propagation functions to implement more effitigypes of distributed representations.
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when within a certain range (02: 60). Although mails for the implementation are

explicitly given, numerous approaches (like radiakis functions etc.) might lend
themselves to the task.

Because abstract schemas may accommodate moretschemas, they might also
be used like super-categories (99: 243) of theedspe objects, where a concrete
schema matches perhaps only a single individuadablgr situation, its abstraction
could inclusively match with other objects as walhstract schemas could also aid in
analogical reasoning

A method for generating new hypotheses with somd kif analogical reasoning
works by merging similar situations and treatingrthas identical.

@ —o—> Q)
%»@4?—»@—»@—»@—».

Figure 1.13: Construction of a new schema by suéipo of input and output
schemas (99: 371, fig. 5.12)

When looking for a way to get from a situatidnto a goal situatio®, where it is
known that by applying actiomto A, we are reaching a situati@ by applyingb to

a similar situatiorB’, we get taC, and by application aof to a similarC’, we reaciD.
By merging the similar situation® and B*, and ofC and C*, we get a chain of
situations fromA to D by application of the actiors b andc. This hypothesis can
then be treated as a behavior program and willegatuated when executed (99:
371).

If the agent has formed functional categories, arsihgle element is missing for
the fulfilment of a plan, a straightforward proced consists in looking for the
functional category of that element (in the givemtext), and trying to replace it with
a different element of the same category. As arfidlexample: How would one go
about fixing a leaking canoe? After identifying tbetegory of the leaking ingredient
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(a hull of bark that has been punctured), the duipight be replaced with another
member of the same category (i.e. another pie¢eeefbark). If that is not available,
how about identifying théunctional category of the bark: here, it is a membrane
keeping the water away. Perhaps, a different exarmpl waterproof membrane is
available, such as an old plastic bag? If thatsdase, we may attempt to replace the
missing piece of bark with the new membrane (99)27

Consequently, a way to construct completely newtswis for a given problem
consists in identifying all functional categoriesdasuccessively filling in different
examples of these categories in such a way as iotairathe functioning of the
plan?’ Still: so far, only few ways of analogical reasmpihave been discussed by
Dorner.

1.5.5 Taxonomies

The subrelations andur-relations of quads span partonomic hierarchiegraveach
element can be defined by its parts. This is diffiéerfrom a taxonomic (“is-a”
hierarchy, where the elements are categories mpd# sub-categories. There is no
link type foris-arelations, but it is possible to express a moigrabt categora by
defining fewer properties than in the sub-catedofhat is, by replacing individual
properties ob by alternatives, values by ranges or omitting ast@ining property
altogether): as explained above, such an abstradso called hollow schema
(“Hohlschema”) (99: 243). We may define (withousdoof generality):

b is-aa,iff Opsura: psurki-[gsurb :qsure (1.8)

i.e. all properties ofa are properties ob, but none of the properties d&f
contradicts a property & We can call thi: ‘accommodatesh (99: 265) and may
use this relationship for perceptual and for reagpprocesses.

Within Psi agents, the is-a relation could be idient and expressed with the aid
of word-label symbols: one word-label could ref@bbth the super-category and the
sub-category, another one only to the sub-cate@@®y225, 267). Note that this does
not mean that we are replacing the category byralsadel! This label would merely
be a way ofreferencingtwo concepts, of which one has accommodating ptiege
towards the other. Thus, the word-label would bez@midentifier of the class; for
example, the word-label “cat” possibly evokes batlschema of a concrete tabby
with plush ears, and a schema of a generic caactaized merely by its feline
properties.

27 An example for finding a solution to @onstructiveproblem by analogical reasoning as
given by Dorner: to construct a watch, one may rddtee the functional categories of the
parts: face—set of display states, hands—pointeiidentify a display state, spring—energy
storage, clockwork—regulation mechanism, using gnén regular intervals to update the
display. Then successively fill in new exemplarshef same category: use a water reservoir as
energy storage, a pendulum regulated outlet (oplgima dripping outlet) as regulating
mechanism, and a glass cylinder with a scale gdagiswith the water collected in the cylinder
indicating the time (99: 263). As the example sisggiethere are at least two strategies at work:
first, a replacement of parts by category, and mseéc@ach new, individual part is chosen
according to the context set by the others.
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Yet, the word-label itself would not distinguishetlevels of generality of the
schemas. If two different categories match on amiwebject, it is impossible to
identify whether a categor belongs to a categoB or vice versa, and it has still to
be established which one has the accommodatingpsowards the othég.

Partonomic hierarchies are fundamentally diffefemtn taxonomic hierarchies. It
will not be acceptable to ussublinks between schemas representing different
concepts to express a categorical relationship destvthem, becauseib establishes
a partonomical relationship (“has-part”), which semantically different from a
taxonomical relation (“is-a”), and a model of thsi fheory will need to use other
means if categorical relationship have to be represl, for instance associative links
along with a specific identifying feature for thera general concept.

Dorner takes an interesting stance in the debattheh representations of object
categories are representedpastotypesor as alternatives @xemplargHarley 1995,
Anderson 1996): both should be possible. A prottfthat is: a schema neglecting
detail or averaging over properties and implementisome kind of range
abstractness) could be used to describe objects gugat similarity (for instance,
bananas), while a set of exemplars might be bstiiéed to represent a heterogeneous
category (like houses). In the latter case, allhef members of this category would
receive some activation, but only the strongestldiaget to the attention of the
system and would thus appear like a prototype. Wben the given context
suggested a different member of the categoryi{ireceives more activation than the
previously strongest element), the “pseudo-prottygould flip into a different one
(99: 604-611).

1.6 Perception

The core of perception i® recognize something as someth{®§: 135), in other
words, it consists in matching the perceived erititg an established schema that is
suitably interrelated to the other representatibesagent possesses with regard to its
world. Perception has to fulfill the following task(99: 134)

- connect stimuli with memory content (i.e. matchsapemas),

28 As a note to the computer scientist: The Psi thearrently does not deal with inheritance
of properties between categories. However, thegoayerelationships may possibly call for
extensions in the current representations of thetl®ory, if one wants to use them for
associative mechanisms that implement polymorphigeritance of properties between
categories. At the moment, category relationshipsvéen two concepts A and B would
strictly require that Aaccommodate8 (99: 265), and do not go beyond that. A and B aoul
use a partially shared representation, but as agdd sports a property that is not part of A
(polymorphy), the categorical relationship wouldase. Take the relationship between a
concrete tabby and the general housecat as an kxam latter (accommodating) concept
might specify four legs and a tail. In the instaat tabby has an accident and looses its tail, the
more general category stops to be accommodatingsandrelya better examplef something
activated by the word-label “cat”. We can overcaime polymorphy-problem by representing
the poor tabby with &ail that has gone missinghstead of no tail at all, i.e. refrain from
polymorphic inheritance.
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- use sensor schemas in such a way as to recognizgs thvith different
appearances as identical, if appropriate (i.e. rgdize),

- if no matching sensor schema is found, then craatew one (or adapt an old
one).

As we will see, in Psi agents these goals are demainly by theHyPercept
mechanism—perhaps the most central behavior progafmall. HyPercept
(hypothesis basegercepion) attempts to predict what is there to be permtiand
then attempts to verify these predictions usingsemor recollections (Schaub 1993).

1.6.1 Expectation horizon

To improve the speed of recognition, predict imminevents and measure the degree
by which the Psi agent has gained an understarmdiitg environment, the perceptual
system maintains a set of expectations. This dedsgcally a projection of the present
into the immediate future, a prognosis that usésoep schemas (99: 128)(Schaub
1993, pp. 87), which may be calleskpectation horizanThe elements of the
expectation horizon are successive situational rgegmns (episodic schemas)
derived associatively from the protocol memory bé tagent. The execution and
outcomes of actions that are part of currentlyvatéid behavior programs are part of
the expectation horizon as well.

present

SRR

Figure 1.14: Expectation horizon (99: 196, fig.3.2

The expectation horizon will typically be more thansinglepor-linked thread of

events. Rather, because many situations and adteres more than one outcome or
are not fully explored, it may contain branches aedd ends, depending on the
knowledge the agent has previously acquired. Maligrrative outcomes of

projected episodic schemas lead to “tattered feh@é the expectation horizon. To
the agent, this gives an important clue on whengutoattention—it should focus on
those areas with a high branching factor, becawse, huncertainty looms. The
monitoring of the properties of the event horizida depth and branching factor) and
the comparison of the expectations with the evastthey are actually unfolding in
the environment lead to specific reactions withive tagent. Depending on the
motivational relevance of the events in questide tesults of the comparison
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influence the behavior regulation and make up mstconfigurations that humans
would perceive as emotions (for example surprismder, startling or fear) (99: 196-
198). (Emotions and the regulation of behavior Wwél discussed in sections 1.9 and
1.8)

The test of the expectation horizon takes placedgpular intervals, and a breach of
the chain of expectations triggers an explorativhavior by establishing an
explorative motive (99: 208; Dérner, Staudel 1988, 309).

1.6.2 Orientation behavior

A violation of the perceptual expectations of thgemt leads to a momentary
disorientation, and triggers amientation behaviarPavlov (1972) described this as a
“what-is-this” reaction”. Here, it works by settintlpe perceptual process to the
unknown object (or more generally: including thgeab into a list of to-be explored
objects) and raising the agent’s general readifeeszction (activation modulator, see
below) (99: 212-213).

1.6.3 HyPercept

The concept oNeisser’'s perceptual cyclis paradigmatic to a lot of work in the
cognitive science of perception and in cognitivedeliing. The idea amounts to a
cycle between exploration and representation ofityeaperceptually acquired
information is translated into schemas, and thesénaturn used to guide perception.
The schemas integrate not only visual informatlmut, also haptic, acoustic etc. The
exploration that is directed by the representedes@s may involve an active,
invasive sampling of the object in question, whigli alter it and in turn influence
the model of the object. The feedback between pémre and representation has
often been ignored in models that look at therrsalation (see Neisser 1976, p. 21,
or p. 112 for a more complete description.)

The Psi theory adopts the principle of the Neigsete (99: 144) and extends it
into a general principle of bottom-up/top-down pegriton, which is calletHyPercept
(hypothesis directed perception—"Hypothesengekeitétahrnehmung”) (Dorner et
al. 1988; Schaub 1993, 1997.

1.6.3.1 How HyPercept works

While Dérner offers several algorithmic descrippflyPercept may be much more
a paradigm than an algorithm. The main idea of Hy&® may be summarized as
follows:

29 5ometimes (see Dorner, Schaub, Straudel and Shwobisler 1988, p. 226; Gerdes and
Strohschneider 1991), the whole bundle of percépiracesses of the Psi agents is subsumed
under the HyPercept label, including the updating gesting of the expectation horizon,
control of modulator system as far as connecteldeqgerceptual apparatus, and so on. At other
times, it isspecificallythe validation of hierarchical schemas by an Imked bottom up/top
down tracing process (Schaub 1993; Dorner 19984p). To avoid confusion, we will use the
latter meaning here.
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- Situations and objects are always representedesarbhical schemas that bottom
out in references to sensory input.

- Low-level stimuli trigger (bottom-up) those schehgotheses they have part in.

- The hypotheses thus activated heed their alreadfjroeed elements and attempt
(top-down) to get their additional elements vedfievhich leads to the
confirmation of further sub-hypotheses, or to theection of the current
hypothesis.

- The result of HyPercept is the strongest activateatching) hypothesis.

- At any time, the systenpre-activatesand inhibits a number of hierarchical
schema hypotheses, based on context, previoudrigacurrent low-level input
and additional cognitive (for instance motivatigrnalocesses. This pre-activation
speeds up the recognition by limiting the sear@tep
HyPercept is not only used on visual images, & ah inner imagery, memory

content, auditory data and symbolic language. D& nactual implementation is
currently restricted to simplified visual imagespowever, and his algorithmic
descriptions are sequential in nature. Sequent@agssing is adequate for attention-
directed processing, but for low-level perceptibis not a good model. For instance,
to use HyPercept to recognize speech based onudiogy input data (as suggested
in 99: 597), a generalized parallel implementatidh have to be used (see further
down below).

For the purpose of illustration, the simplified sien given by Dorner (99: 145,
extensive description 99: 149-157) might suffice:

“HyPercept”

1. identify an initial pattern

2. create Jist of all 7nstances of the pattern as it is contained in schema
hypotheses

3. while /7st not empty:

4, choose an 7nstance of the pattern and take it out of the 77st

5. repeat:

6. select an untested neighboring element and test its sub-schema

7. if element is invalidated, continue w. next 7nstance from 7ist

8. until enough neighboring elements are tested or none left

9. end with success (a schema has been matched)

10. continue with next 7nstance from Tist

11. end with failure (no matching schema has been found)

A simple HyPercept algorithm (99: 145)

The algorithm works by taking an initially recogedzfeature as a starting point. This
feature does not need to be atomic (i.e. a serigmggactivity as a direct result of
some primitive environmental stimulus), but canilgalse an already recognized
object concept, which itself is the product of #pplication of a lower-level instance
of HyPercept. Next, the algorithm identifies evaigy that feature could be within
the available higher level schemas: it does noy ogtrieve those schemas the initial
feature is part of, but also takes care of the casewhich the schema occurs at
multiple positions. All these instances of occuoef the feature are collected in a



38 Dérner’s “blueprint of a mind”

list (sometimes called “supra list®y.The version space of possible theories is made
up by the instances of all those schemas that icotfita elements of the list.

To find out which schema the feature belongs te, thighboring features (i.e.
those that arpor/ret linked at the same level of the partonomical schéefinitions)
are successively tested. (This test will usuallguiee a recursive application of
HyPercept, this time top-down (99: 158-158}.)

Whenever a feature is refuted (because it couldaahatched with the respective
sensory input) the local perceptual hypothesissfaind another instance of the
pattern within the known set of hypotheses hasttebted.

When the neighboring elements of the initial featdrave been sufficiently
explored and verified, the parent schema (the batdontains these elements as its
parts) is considered to be confirmed—e.g. we migdte confirmed all the line
elements that make up a character und considegrtiee character to be confirmed
now. We may then declare this schema to be theimiéal pattern and continue with
HyPercept at the next level in the hierarchy—endintd out which word the recently
recognized character might be part of, and séon.

1.6.3.2 Modification of HyPercept according to the Resolution Level

If the schema to be checked is sufficiently compliwe application of HyPercept
might take extremely long, and it is necessarygees it up, even if that means
sacrificing accuracy. Obviously, it is much bettet to fix this trade-off at a constant
setting, but to vary it depending according to gfreen circumstances: How much
time is available? How crucial is accuracy in thezagnition of detail? How
important is the object in question? What othercpsses besides perceptive
recognition are competing for the limited cognitivesources of the agent?
Depending on these aspects, the agent may vatgvied of perceptual resolution

30 There is a potential problem in instantiating @dissible interpretations of the feature in
schemas where it might be contained. If a schemdaots a recursive definition (as a
grammatical schema, for instance, might do), tremeld be literally infinitely many such
instances. It will be either necessary to prevamg tecursion and loops in schema definitions
or to look for remedies, for instance by increadimglist of instances iteratively during testing.
31 To check a neighboring feature, the agent mighehavmove its foveal, tactile or other
sensors accordingly to the relation that it hash® original pattern (see section on spatial
annotation above). If the feature is of a differenttdality however, it might be sufficient just
to assess the current result of the sensors teréeis grounded in (for instance, if a
neighboring feature is of olfactory nature, it mayffice to take the current output pattern of
the olfactory sensors into account).

32 Here, we see a potential weakness of HyPerceptwire to stop after the first recognition.
If we are recognizing a character in handwritingere may be more than one possible
interpretation. If we just stick with the first gnand we do not find a matching word the
character is part of later on, we might want tortain a few alternative interpretations! This
requires a very simple modification; instead ofresenting the confirmation or refutation of a
schema, we may store a link weight that correspémdise quality of the match. If we do not
restrict HyPercept to the processing of lists lousets of elements that might be examined in
parallel, we might devise a HyPercept algorithnt gracefully supplies alternatives between
its different instances along the hierarchy.
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(“Auflésungsgrad”). The resolution level specifiadich fraction of the available
features is taken into account during the HyPerogithing process (99: 14%).

Features should best not be randomly neglectedweigihted by relevancy, and
ignorance should start at the least relevant 0®@s1(78). The most relevant features
are ideally the ones giving best distinction frothes objects in the version space.

To further improve recognition performance, altéine hypotheses should be
ranked somehow according to their likelihood anctctled in that order. This
amounts to griming of the hypothesgand is based on already perceived patterns
and the current goals (99: 179); it may also dememndiready recognized objects.

Because perception usually serves some goal, ther af hypothesis checking
should also be modified according to the conteat th set by the motivations of the
agent (see section 1.8.2) (99: 149). Generallyraink&ing of hypotheses takes place
by pre-activating them through a spread of activafrom the associated context (99:
168).

There is an additional application for the resaolntievel parameter: Sometimes, it is
helpful if the agent is not too finicky about oljgecognition and recall, because
limited accuracy in matching might help groupinmiéar objects—this kind of over-
inclusivity may sometimes be a useful source fatuative hypotheses. Thus, under
certain circumstances, it might come in handy taticd how exactly schemas have to
align for the match (99: 183). Generally, in a reabrld environment where
phenotypes of objects vary, it is advisable towallior a certain error rate when
comparing expectation with sensor data; treatingeaib of similar appearance as
identical can be utilized to adapt the schemasugihd so they accommodate more
objects over time (99: 222).

1.6.3.3 Generalization and Specialization

The evaluation of schemas that have been sufflgiénit incompletely matched to
sensory data might lead to slight adaptations. $ioms, however, more thorough
changes might be necessary, if the agent learngliggimilar appearances belong to
the same class of object. A way to achieve suctharsaticgeneralizationconsists
in adding new sub-schemas as alternatives to tlegichema.

Conversely, if a misclassification occurs, spezalbn of a schema might work
by removing sub-elements that have presumablydedisclassification. Also, if sub-
elements are not longer used to distinguish ohj#ugsr links might deteriorate until
these sub-elements disappear from the schema.

1.6.3.4 Treating occlusions

If a part of an object is occluded by another (@it py the edge of the field of vision),
the object might still perfectly match its represgion if the missing parts are
“hallucinated”. This is really quite simple to aetie. Once it is established that a

33 Some evidence that this is an adequate model ctiorasKagan (1966) who tested human
subjects for individual differences in ignoring aiét of pictures that were presented to them.
Still, the approach is not without problems. Dérhenself notes that in most circumstances,
the error rate of recognition grows faster tharetimsaved by ignoring features. (99: 175-177)
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portion of the sensory field is occluded, thesedmpptible areas are ignored during
testing; HyPercept just pretends that the respediatures are there (99: 164). In
order to tell occluding layers from those that eceluded, it is in many cases helpful
to add a depth of vision detection mechanism tg#reeptual repertoir®¥.

1.6.3.5 Assimilation of new objects into schemas

Most of the time, it may suffice to match sensonput to existing schema
hypotheses, but every once in a while the agetibisnd to encounter something
new—an object that does not match to any knowrcsire. For the incorporation of
new objects into the agent's visual repertoiess{milatior), Dorner proposes a
scanning routine:

The scanning starts out with a spiral movemenhefretinal sensor to identify the
beginning of new features. The retina then tradesgathe structure of the object in
guestion, until it does not find a continuationigtbnly works if it is always possible
make out clearly if a structure is connected or).n®dhis endpoint might act as a
distinctive feature, and the system starts the Irydfe process to check whether it is
part of an already known schema. If no matchingsehis found, the system has to
accommodate a new structure.

Starting from the previously identified end-poiatid under the assumption that it
is part of a line structure, the scan process dates the direction of continuation of
this line and follows it until its other end. Anyamches that are passed along the way
are recorded into a list and will be revisited tade. At these branching points, the
scan process follows the direction that appearbetdhe best continuation of the
current line (in the current implementation, this simply the straightest
continuation3® (99: 213; 02: 114-119).

A simple version of HyPercept has been put into neds “Island” agent
simulation, and there have been successful expetinte recognize cartoon faces
with the algorithm (99: 160). As it turns out, thisual scanning performed by the
perceptual process appears very similar to thhtiofans (99: 162).

To get HyPercept to work on real-world imagery, sgossible modifications
may improve its suitability to the task. For instanthe matching process could be
combined with transformation layers that allow foerspective correction (i.e. a
skewing, shearing or rotating of coordinates insserscripts that is put ,in front* of
HyPercept algorithm) (99: 169-172).

While the HyPercept algorithimplicitly uses syllogistic reasoning and thus the
Psi agent can be called a “logic machine” (99: 268would be misleading to

34 Dérner asks where the ignorance towards impetdepfieatures should stop because
sometimes hallucination would lead to weird and amanted results. Simple solution could be
to check for complete version space (i.e. all dijgpotheses active in the current context) and
accept if result is not (or not too) ambiguous.

35 The scanning process for lines results impligithserves Gestalt principles, specifically:

- Closure—connected elements are grouped

- Proximity—near elements are grouped

- Good curve-adjacent line segments with similar angular diceciare grouped (Goldstein
1997, p. 170).

Therule of experiencés implemented by scanning for known arrangemersts
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compare this to human logic reasoning, which rexguthe use of language and takes
place on a different level of the cognitive system.

1.6.4 Situation image

Because perception is a costly operation that reguyrobing of many stimuli in a
relatively persistent world, a model of the enviremnt is generated, stored and
operated upon: thsituation image(“Situationsbild”). This model is usually only
slowly and gradually changing. While for instante tagent’s retina is constantly
moving, primitive percepts change dramaticallytladl time, the composition of these
stimuli in the situation image is relatively stable

The situation image might be seen as the end optbicol chain (99: 443), or
vice versa: the protocol memory is built by sucoedyg adding situation images (99:
111). While the situation image is linked to thetplay references into the protocol, it
also leads into the anticipated future: it is lidkato the agent’expectation horizan
which is basically an extrapolation of the situatimmage derived by extending the
known episodic schemas into the future (99: 205).

Within Psi agents, the situation images play thaesaole as théocal perceptual
spacein robotics (Konolidge 2002).

“Perceptual organization”

1. for all elements in list perceptual area do:

2. until Tlist is empty or out of time for perceptual cycle:

3 select element perceptual focus from list perceptual area

4, perform HyPercept on perceptual focus

5. if Hypercept ends witﬁ successful recognition:

6. if found something unexpected (i.e. not in expectation
horizon):

7 surprise! (modification of emotional modulators)

8 orientation reaction;

9 set up explorative goal to identify conditions of new
event sequence

10. else (i.e. Hypercept did not end with successful recognition):

11. wonder! (modification of emotional modulators)

12. orientation reaction;

13. set up explorative goal to identify properties of new object

14. update situation image and expectation horizon

15. repeat

16. until out of time for perceptual cycle:

17. choose random perceptual focus from background (i.e. perceptible but not
in perceptual area)

18. perform steps 3-14 for the new element

19. repeat

Algorithm: The organization of the situation imagy&d expectation horizon (99: 209,
fig. 3.26)

The building of the situation image is a real-tia@tivity and thus its quality depends
on the available processing resources. If the aigenhder “stress”, that is, if other
cognitive activity blocks the resources or urgesttam is necessary, the construction
of the situation image might be restricted to dlshaforeground check. If there is no
time left for background checks, the agent tendwiss new opportunities offered by
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changes in the environment. This leads to a coaseev behavior because new
objects can not be integrated in situation image 29.1).

1.6.5 Mental stage

While the situation image attempts to capture &udcsituation, the agent might also
need to construct hypothetical situations omental stage“‘innere Buhne”) (99:
199), sometimes also referred to as ‘mental prigjecicreen’ (“innere Leinwand”).
This is basically a situation image used for imagon and can be used to unfold
sensor schemas or to enact (simulate) behavioramy

Here, sensor schemas may be used as plans to oepatsentations of objects.
(99: 200); sensor schemas are not simply imagesdbigits that may be used for both
recognition and imagination (99: 201). Within themtal stage, the implicit features
of schemas may be re-encoded and recognized, evesmbined into new variants.
Naturally, such a construction process requiregeh@nism to control it, and Dorner
suggests that language plays an important role [@9e202)

The ‘inner screen’ is also important for object @amson (02: 121-122), that is,
for the recognition and distinction of complex atige the respective sensory schema
is projected (constructed from long-term-memoryteat) onto the mental stage.
Then, a logicahnd-operation is performed with situation image tonitify matching
structures, a logicator to highlight differences, or a general similarityeasure is
obtained by evaluating the combined activationito¢ion image and mental stage.

1.7 Managing knowledge

The perceptual processes of the agent lead toctheraulation of a protocol memory
that decays over time, leaving behind weakly orommected “islands” of episodic
schemas and behavior programs that automaticaiby grto a jungle, given time and
a sufficiently complex environment (99: 300). Thedahanisms operating on the
knowledge structures have to aim for
- Correctnessthe depicted relationship should be referrinthtags that are factual
- Completenesschemas should be connected as much as possjjaleling cause
and effect, partonomic relationships, possiblerattons with the agent etc.
- Consistencythe outcomes of events should not contain coitfiads (99: 280-
281)36
To provide such necessary “mental forestry”, a neimbf regularly activated
behavior routines are suggested:

1.7.1 Reflection (“Besinnung”)

The reflection mechanism re-activates and enad®@ol elements to identify new
connections. It works by using a HyPercept alganithot on sensory data, but on
episodic schemas/protocols to recognize them asetbimy (i.e. an abstract or

36 Because, within the style of representation suggdebere, this rule can be observed by
making contradictory outcomes alternatives, we khalso aim for sparseness.



43

specific episode schema). Thus, protocols may liended by adding previously
occluded bits, which takes place according to &rfmeting schema. The extensions
apply to those points where it is hecessary to tcocisa match to a known routine,
and where the additions to not contradict whatrisaaly known (99: 192-196).

An example of this would be the observation of songesitting in a room, being
served with food, eating and then handing monegntather person in the room. After
heaving learnt about restaurants and the typichh%ier in a restaurant, the scene
could be remembered and interpreted as a restagejuience, the eater being
identified as a guest, the money receiver as aewait cashier. At the same time,
details of the scene stop being remarkable (bedheseare already part of the well-
known routine) and do not need to be rememberethéspecific instance.

The reflection process should be initiated whendvere are too many unordered
or loose elements in the protocol, because it tetmdsmpress and order it.

“Reflection”: match protocol to episodic schema

1. until no untested candidates for episodic schemas available:

2. choose episodic schema that could match current [section of] protocol

3. attempt to match episodic schema with protocol using HyPercept

4. until match of episodic schema according to current resolution Tevel
successful:

5 if unmatched sub-schemas in episodic schema left:

6. if sub-schema contradicts observed protocol:

7. break (i.e. stop matching the current episodic schema,
continue at 11.)

8. else:

9. fi1l in sub-schema into protocol

10. repeat (i.e. try to match current episodic schema with extended protocol)
11. if episodic schema matches protocol:

12. end with success

13. repeat (i.e. try with different episodic schema)

14. end (no episodic schema found)

Algorithm: Reflection (99: 192, fig. 3.21)

1.7.2 Categorization (“What is it and what does it ~ do?”)

Within the Psi theory, categorization is rarely mmed outside the context of
language. Categories are also not discussed incéngext of memory efficient
coding, but mainly as an aid in reasoning. An exXanip a routine that might be
called “what is it and what does it do?”. This idehavior that extends the agent’s
orientation behavior (99: 288) and requires langugd®: 289), because it relies on
taxonomic hierarchie¥.

37 Dérner depicts the described categorization pmassa kind of serendipitous daydreaming.
Dreaming is, according to Ddrner, a mechanism tdopm a similar task as the described
categorization procedure—the reorganization aregmattion of freshly acquired content—with
less control and a higher degree of flexibility. Whhe elements of dreams might appear
random, they are probably selected by their redftivsparse connectedness and a high
appetitive or aversive importance (99: 290-299).agents don’t dream yet.
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“Categorization - what is it and what does it do?”

until matching category for object is found:
attempt to categorize object; find a category
check categorization by comparing properties of object to other objects
of same category;
if object matches category:
try to identify episodic schemas related to object;
if applicable episodic schemas identified:
end with success
else (i.e. no episodic schemas found):
search for category of higher order (super-category)
if a super-category has been found:
until no untested co-adjunctions left in super-category:
choose a co-adjunction (i.e. another sub-category of
the super-category)
13. try to find episodic schema for co-adjunctive
category
14. if episodic schema is applicable to object
15, end with success
16. repeat
17. repeat (i.e. try again with a new category)
18. create exploratory goal
19. end with failure

oo~ W RN =

=
NROo-

Algorithm (99: 286, fig. 4.6)

1.7.3 Symbol grounding

As we have seen, the description of an object bierarchical schema might enclose
many modalities, such as visual, acoustical, ®ctibnsummative, etc. A symbolic
reference to an object, i.e. an element that maysked to refer to that object, can be
derived from one of these modalities, or it cant hesadded. Thus, a symbol standing
for an object can be understood aswb(inked) element of that object. (99: 232)n
implementations, sometimes a different link typi @nd ) is used for the connection
between word labels and reference.

A symbol is a schema just like others. It considtparts that eventually bottom
out in sensor and effector modalities. (If it isr fnstance, a word, it might be made
up of letters, which in turn may be described Wjrthisual appearances. Of course, a
symbol does not need to be a word, it can be ajgcbthat is suitable to be used to
refer to something. This something is not the “reabject itself, but the
representations that describe the object, a rektip that has been expressed by

38 Because Dérner uses word-labels (i.e. a sort obsighinstead of categories elsewhere (99:
225), he apparentlgur-links objects to their symbols. This would be atcadiction to using
the symbols as intensional features of the refe@mubject as described above. However,
Doérner does not mention typed links in “Bauplandiire Seele”, and in the succeeding volume
“Die Mechanik des Seelenwagens”, there is not miisbussion about symbols. (In “Bauplan
fur eine Seele”, links only seem to have directjiarsd depending on the context, Dérner uses
differing link directions in his illustrations (9267).) In implementations, Dérner has avoided
this dilemma by simply using a different link tyggeic andlan, see Kiinzel 2004) for the
connection between word labels and reference.
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Frege (1892): a symbol’'s meaning is made up ofsémse” (“Sinn"—the thoughts
that describe it) and its “reference” (“Bedeutunghe-actual object).

“The meaningfulness consists on one hand in theatian of certain thoughts by
the symbol, on the other hand in that these thaudhtturn usually (but not
necessarily) refer to factual objects and occueerin the outside world.” (99: 226)
In other words, a symbol refers to some kind of taerepresentation describing an
entity that can be factual (i.e. constituted frorodalities that interface with the
environment) or imaginary. In semantics, the actimgéct is usually called ‘referent’
and the evoked schema structure would be the &rber (see figure 1.15). (Ogden
and Richards 1960, p. 10)

symbol referent

“DOG™

reference

R

Figure 1.15: Referent and reference

The reference consists afenotation and connotation the first one being the

schematic object description itself, whereas thenotation evokes a context that
depends on the current situation and motives (28:237). Because the referent of
symbols is something the agent establishes froeradntion with its (internal and

external) environment, symbols are always grourféfee also Dérner, 1996.)

1.8 Behavior control and action selection

The Psi theory suggests that all goal-directecdomasthave their source in a motive
that is connected to an urge (“Bedarfsindikatortyhich in turn signals a
physiological, cognitive or social demand. ThisetiHfold distinction is of crucial
importance.

Actions that are not directed immediately onto algare either carried out to
serve an exploratory goal or to avoid an aversitteason. When a positive goal is
reached, a demand may be partially or completdfifiéa, which creates a pleasure
signal that is used for learning (by strengtherimgassociations of the goal with the
actions and situations that have led to the fuai#ht). In those cases in which a sub-

39 Not surprisingly, Dorner rejects Searle's ChinesemRargument (Searle 1980, 1984): of
course, the operator (the person working in themjodoes not need to know the meaning of
Chinese symbols, but the room does. Dérner alsoearthat Searle seems to (wrongfully)
believe, that syntax and semantics differed in thatlatter would not be formalizable (99:
240).
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goal does not yet lead to a consummative act, negéhmay still create a pleasure
signal via the competence it signals to the ag#fiier finally reaching a consumptive
goal, the intermediate goal may receive furthenfogcement by a retrogradient
(backwards in time along the protocol) strengthgnirfi the associations along the
chain of actions that has lead to the target sd@nat

1.8.1 Appetence and aversion

The actions of the Psi agent are directed and ateduaccording to a set of
“physiological” or “cognitive” urges. These urgeem from demands (e.g. for fuel
and water) that have been hard-wired into the d¢imgnmodel. In order for an urge to
have an effect on the behavior on the agent, is ¢ matter whether iieally has an
effect on its (physical or simulated) body, butttihas represented in the proper way
within the cognitive system. Whenever the agentgoers an action or is subjected to
an event that reduces one of its urges, a sigrtal avstrength that is proportional to
this reduction is created by the agent’s “pleaserger” (99: 50, 305). The naming of
the “pleasure” and “displeasure centers” does mgtlyi that the agent experiences
something like pleasure or displeasure (99: 48 fidime refers to the fact that—Ilike
in humans—their purpose lies in signaling the refle evaluation of positive or
harmful effects according to physiological, cogréti or social demands.
(Experiencingthese signals would require an observation ofettségnals at certain
levels of the perceptual system of the agent.

Sensor Regulator Demand _ Appetence
deviation from . Signal if O/'
target value regulation fails

“"\
Aversion

Pleasure Displeasure
Centre Centre
reacts to reacts to
positive negative
difference difference
Associator Associator
for Appetence for Aversion

Figure 1.16: Appetence and aversion

Please/displeasure signals create or strengtheassaaociation between the urge
indicator and the action/event (for a possible ne@m, see ‘associator neuron’
above). Whenever the respective urge of the agetdrbes active in the future, it
may activate the now connected behavior/episodiersa. If the agent pursues the
chains of actions/events leading to the situatidleviating the urge, we are

witnessing goal-oriented behavior (99: 127).
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Conversely, during events that increase a needifff&tance by damaging the
agent or frustrating one of its cognitive or soaiafjes), the “displeasure center”
creates a signal that causes an inverse link fteenharmful situation to the urge
indicator. When in future deliberation attemptgs (ftstance, by extrapolating into the
expectation horizon) the respective situation getssated, it also activates the urge
indicator and thus signals an aversion (99: 54).3@5 aversion signals a predictor
for aversive situations, and such aversive situatiare avoided if possible. This
could be done by weighting them against possiblesgduring planning; however, it
is often better to combine them with distinct bebawstrategies to escape the
aversive situation actively. Dorner suggest thegoaiation to explicit flight and fight
reactions (which in turn are selected between aiogrthe estimated competence)
(99: 55). Furthermore, an aversion signal shoulderghe action readiness of the
agent by increasing its activation (see below).

1.8.2 Motivation

The urges of the agent stem from a fixed and finitmber of hard-wired demands or
needs (“Bedarf”), implemented as parameters thmt te deviate from a target value.
Because the agent strives to maintain the tardaevay pursuing suitable behaviors,
its activity can be described as an attempt to ta@ira dynamic homeostasis.

Currently, the agent model of the Psi theory sutggélsree “physiological”
demands (fuel, water, intactness), two “cognitide€mands (certainty, competence)
and a social demand (affiliatioff.

These demands are explained below (section 1.8.2.3)

1.8.2.1 Urges
It is not always necessary for a low-level demaadbe communicated to the
cognitive system. For instance, if in our examples pressure in the boiler of the
steam vehicle drops too low, a reactive feedback lmight kick in first and increase
the fuel supply to the burner, thus producing mioeat and hopefully getting the
pressure back to normal. Sometimes, this mightuook because there is insufficient
fuel left, or the agent uses up more pressure t®rcurrent activities than can
replenished. In these cases, the agent needsitdobmed about the deficiency to be
able to take action against it. To this end, eamimnahd sensor (“Bedarf”) is coupled
with a need indicator arrge (“Bedurfnis”) 41

If a demand remains active for a longer period iofet (i.e. if there are no
sufficient automatic countermeasures againstig) ,urge becomes activated.

1.8.2.2 Motives
A motive consists of an urge (that is, a need &tilig a demand) and a goal that is
related to this urge. The goal is a situation saheharacterized by an action or event

40 |n the actual implementation, there is an addiiatemand for “nucleotides”, which are a

kind of bonus item.

41 ‘Urge’ could also be translated as ‘drive’. Theme'urge’, however, has already been

introduced in Masanao Toda’s simulation of the “Gus eaters” (Toda 1982), and it seems to
fit well here.
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that has successfully reduced the urge in the pasitthe goal situation tends to be
the end element of a behavior program (see dismussi protocols above). The
situations leading to the goal situation—that iaylier stages in the connected
occurrence schema or behavior program—might bedntaemediate goals (99: 307-
308). To turn this sequence into an instance that (as defined by Madsen, 1974)
“initiate a behavior, orient it towards a goal akekp it active”, we need to add a
connection to the pleasure/displeasure systemrdsat is anotivator(99: 308) and
consists of:

- a demand sensor, connected to the pleasure/dispesgstem in such a way, that
an increase in the deviation of the demand from tdrget value creates a
displeasure signal, and a decrease results in asyplke signal. The
pleasure/displeasure signal should be proportittndie strength of the increment
or decrement.

- optionally, a feedback loop that attempts to norreathe demand automatically

- an urge indicator that becomes active if thereoismay of automatically getting
the demand to its target value. The urge shoulgrbportional to the demand.

- an associator (part of the pleasure/displeasurermyshat creates a connection
between the urge indicator and an episodic scheshaitior program, specifically
to the aversive or appetitive goal situation. Ttierggth of the connection should
be proportional to the pleasure/displeasure sigwale that usually, an urge gets
connected with more than one goal situation oveetisince there are often many
ways to satisfy or increase a particular urge.

1.8.2.3 Demands

All behavior of Psi agents is directed towards al gituation, that is characterized by
a consumptive action*konsummatorische Endhandlung”) satisfying one toé
demand of the system. In addition to what the ptaygor virtual) embodiment of the
agent dictates, there are cognitive needs thattdine agents towards exploration and
the avoidance of needless repetition.

The demands of the agent should be weighted ageaws$t other: a supply of fuel
is usually more important than exploration. Thisn csimply be achieved by
multiplying the demands with a factor accordingtheir default priority (99: 396,
441)42

Fuel and water

In Dérner’s “island” simulation, the agent (a Ettsteam engine) runs on fuel derived
from certain plants and water collected from puddi®@he agent always has to

maintain a supply of these resources to surviveeWand fuel are used whenever the
agent pursues an action, especially locomotion.ithatlly, there are dry areas on

42 |f the reward (pleasure signal) associated witbalily available type of event is very high
without requiring an accordingly challenging belwa\(for instance, by having through ‘neuro-
chemical properties’ direct effect on the pleasure center), the Psi agent ndgkelop an
“addiction” to the stimulus. If the circumstancesding to the stimulus have damaging side-
effects hindering the agent to satisfy its demamgdsther activities, the agent might get into a
vicious circle, because the addiction becomes Hutusive source of pleasure signals. (99:
428-431)
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the island that lead to quicker evaporation ofesfovater, creating a demand increase
and thus displeasure signals.

Intactness (“Integritat”, integrity, pain avoidance )

Hazards to the agent include things like poisonplats, rough territory, and
corrosive sea water. They may damage the bodyeohgfent, creating an increased
intactness demand and thus lead to displeasuralsigh damaged, the agent may
look for certain benign herbs that repair it, witensumed.

Certainty (“Bestimmtheit”, uncertainty reduction)

To direct agents towards the exploration of unknajects and affairs, they possess
a demand specifically for the reduction of unceaiin their assessment of
situations, knowledge about objects and procesmiaheir expectations. (99: 359)
Because the need for certainty is implemented aimtd the physiological urges, the
agent reacts to uncertainty in a similar way apaif® (99: 351) and will display a
tendency to remove this condition. This is doneabbgpecific exploration” behavior
(Berlyne 1974; 99: 355).

Events leading to an urge for uncertainty reducéiom (99: 357-363)

1. The HyPercept routine comes up with an unknownatlgjeepisode.

2. For the recognized elements, there is no connetdidrehavior programs—

the agent has no knowledge what to do with them.

3. The current situation is “foggy”, i.e. occlusiont.emake it difficult to

recognize it.

4. There has been a breach of expectations - somet éxenturned out

different from what was anticipated in the expgotahorizon.

5. Over-complexity: the situation changes faster than perceptual process

can handle

6. The expectation horizon is either too short or bh&s too much. Both

conditions make predictions difficult.

In each case, the uncertainty signal should be hteigaccording to the relation
of the object of uncertainty to appetence and &wergn other words, in proportion
to its importance to the agent) (99: 364). If arcartainty applies to a goal that is
difficult to achieve, the signal should be stronderincrease the likelihood of
exploration in that area (99: 369).

The demand for certainty may be satisfied by “éetyaevents” - the opposite of
uncertainty events:

1. The complete identification of objects and scenes.

2. Complete embedding of recognized elements into\behprograms.

3. Fulfilled expectations—even a pessimist gets a révilahis dreads come

true.

4. Along and non-branching expectation horizon.

Like all urge-satisfying events, certainty eventgate a pleasure signal and
reduce the respective demand. Certainty signalalaceresulting from the successful
application of the explorative behavior strated#3: 369):

43 Dérner even calls uncertainty an ‘informationainpstimulus’ (99: 548).
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- the acquisition of new sensor schemas,
the trial-and-error strategy to learn new behagimgrams,
the reflection process to recognize episode schamasurrent protocol
the categorization process (“What is it and whagsdd do?”) to organize
existing knowledge

Because the agent may anticipate the reward sidimats successful uncertainty
reduction, it can actively look for new uncertaisti to explore (“diversive
exploration”, Berlyne 1974). This leads to an aetdnhancement of competence (99:
356)4

Another area where uncertainty reduction might @ayle, is the perception of
beauty, which is besides being related to appetignds (for instance sexuality)
dependent on finding ordering principles againststance (99: 373-376).

Competence (“Kompetenz”, efficiency, control)

When choosing an action, Psi agents weight theagtineof the corresponding urge
against the chance of success. The measure farthtnece of success to satisfy a
given urge using a known behavior program is calkgkcific competence”. If the
agent has no knowledge on how to satisfy an urgdas to resort to “general
competence” as an estimate (99: 408). Thus, germyaipetence amounts to
something like self-confidence of the agent, anid ian urge on its own. (Specific
competencies are not urges.)

The specific competence to reach a particular gadi a particular behavior
program can be estimated by propagating activatioough the current position of
the behavior program and measuring the incominigatain at the goal situation. (It
is important to inhibit the execution of behavitwre, because otherwise the agent
will attempt to enact its plan proposals immedia)el99: 398-405}5>

The general competence of the agent reflects Hityato overcome obstacles,
which can be recognized as being sources of disypleasignals, and to do that
efficiently, which is represented by pleasure sign@hus, the general competence of
an agent is estimated as a floating average oeepldasure signals and the inverted
displeasure signals (99: 406-413). Dorner suggastimple neural circuit that
approximates the floating average (figure 1.179: @12)

44 Dérner points out, that jokes typically work bycertainty reduction—throughout the joke,
uncertainty is built up. By finding an unexpectetuson, the hearer experiences a relief and a
pleasure signal from the certainty event.

451t would be more accurate to calculate the Bayegiabability of reaching the related goal.
The behavior program/episode schema leading tdekized consumptive situation consists of
a branching tree with the present as root and thed gs one of the leaves. However,
experiments with humans show that they systemétiaalerestimate or underestimate the
probability of success when choosing an action.theamore, according to the way link
weights are set, the weights do not only encodefrémguencies of state transitions (which
would correspond to the probabilities of gettingnfra given situation to another one) but are
also influenced by the intervals of observatiorgauese links are subject to a decay over time.
(99: 397-401)
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Pleasure Signals

floating Average

Displeasure Signals

Figure 1.17: A neural circuit for identifying a ting average (99: 412)

Because the general competence is used as a losust how well the agent
performs in unknown situations, it is also refertecsheuristic competence

As in the case of uncertainty, the agent learnanticipate the pleasure signals
resulting from satisfying the competence urge. Amsource of competence is the
reduction of uncertainty. As a result, the agenivaly aims for problems that allow
to gain competence, but avoids overly demandingagans to escape the frustration
of its competence urge (99: 418-423). Ideally, thémds the agent into an
environment of medium difficulty (measured by itsrrent abilities to overcome
obstacles}

But it also may cause the agent to flee from atffating task into anything
providing a little bit of competence satisfactitime human equivalent being a student
fleeing from a difficult assignment into househalsbrk that would normally be
ignored (99: 423-428). “If humans (or Psi agents} ¢nto situations that are
‘competence-devouring’, areas for reestablishingmetence gain much importance”
(99: 424), and there is a danger of escapist gvecialization: Thus, the Psi theory
models a mechanism explainipgpcrastination

Affiliation (“okayness”, legitimacy)

Because the explorative and physiological desifd3so agents are not sufficient to
make them interested in each other, Dérner hagdeéstthem a demand for positive
social signals, so-calledegitimacy signa’. With a legitimacy signal (drsignal for
short), agents may signal each other “okaynessh wégard to the social group

46 When extrapolating the acquired behavior progrant episode schemas according to the
occurring situations, we get a state space (witlhoa€ and events as transitions) that Dérner
calls“Wirkwelt” (world of effects) andWertwelt” (world of values). The latter consists of the
aversive, appetitive or neutral evaluations ofaitins (states), whereas the first consists of the
active or passive known transitions between theges Active transitions are effected by the
agent, while passive transitions are due to pragsemf the environment (including other
agents). An agent that considers himself in a waevith much more passive than active
transitions will tend to be resignative. The agentlesire to acquire competence (i.e.
abilities/control) can be interpreted as an ongaati@mpt to increase the correspondence
between the active world of effects and the worldralues, so that the agent can actively
obtain everything it needs and avoid everythingedkening. Success in the quest for
competence leads to the equivalent of a senseofige(99: 244-252).
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(Boulding 1978, p. 196). Legitimacy signals areexpression of the sender’s belief
in the social acceptability of the receiver (99782

Psi agents have a demand for |-signals that needsdnt replenishment and thus
amounts to an urge to affiliate with other age®& 329). Agents can send I-signals
(but there is only a limited amount to spend) (399) and could thus reward each
other for successful cooperation.

Dérner hints at the following enhancements to théchanism:

- anti-l-signals Just as legitimacy signals may reward an agansdmething, an
anti-I-signal (which basically amounts to a frowtgunishes’ an agent by
depleting its legitimacy reservoir (99: 336).

- internal I-signals An agent may receive legitimacy signals intesnailst by
acting in a socially acceptable way - without tleed of other agents giving these
signals. (Dérner notes that these internal I-sigraiount to something like
‘honor’).

- supplicative signalsA terminus introduced by Norbert Bischof, these pleas
for help’, i.e. promises to reward a cooperativéoacwith I-signals or likewise
cooperation in the future. Supplicative signals kite a specific kind of anti-I-
signals, because they increase the legitimacy ofgthe addressee when not
answered. At the same time, they lead to (exteaindl internal) I-signals when
help is given. (99: 319-323).

- adaptive desire for I-signald he desire for |-signals varies from person tcspe
and apparently depends to a significant extendtoldlood experiences. There
could be a similar priming mechanism for Psi agents

- legitimacy signals from other sourcés social interchanges, there are many other
possible sources of legitimacy signals, for instapaiformity, certain symbols
etc. joint action (especially at mass events) Eftés can be achieved by activating
a specific association mechanism during triggent€or instance mass events,
joint activity, certain family related activitieghd thus relating elements of these
situations to the replenishment of the affiliatibemand (99: 341-343). L-Signals
could thus be received by the sight of an arbitfaature. By establishing group
specific I-signals, an adherence to a group coelddhieved (99: 334-335).

- by making the receivable amount of I-signals depahaf the priming towards
particular other agents, Psi agents might be indltcalisplayjealous’ behavior
(99: 349).

Even though the affiliation model is still fragmany, it might provide a good handle
on Psi agents during experiments. The experimeaterattempt to induce the agents
to actions simply by the prospect of a smile ominp which is sometimes a good
alternative to a more solid reward or punishment.

Current and yet unpublished work by Ddrner’'s grdapuses on simulations
using supplicative signals and I-signals to formb& groups of individuals in a
multi-agent system. Here, individual agents formlitimns increasing their success
in a competitive environment by deciding to reasvards supplicative signals with
support, neglect or even aggression.
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1.8.2.4 Motive selection

If a motive becomes active, it is not always se&lddmmediately; sometimes it will
not be selected at all, because it conflicts witstranger motive or the chances of
success when pursuing the motive are too low. éntéhminology ofBelief-Desire-
Intention agentgBratman 1987), motives amount desires selected motives give
rise to goals and thus airentions Active motives can be selected at any time, for
instance, an agent seeking fuel could satisfy eerearge for water on the way, just
because the water is readily available, and tingsattive motives, together with their
related goals, behavior programs and so on, ateddatention memory99: 449).
The selection of a motive takes place accordin@g t@lue by success probability
principle, where the value of a motive is givenitsyimportance (indicated by the
respective urge), and the success probability dépen the competence of the agent
to reach the particular goal (99: 442).

In some cases, the agent may not know a way tchraagoal (i.e. it has no
epistemic competence related to that goal). Ifatent performs well in general, that
is, it has a higlgeneral competence, it should still consider selecting tbkated
motive. The general (heuristic) competence shougb add something to the
probability of success when a possible way to rebetgoal is known. Therefore, the
chance to reach a particular goal might be estidnaging the sum of the general
competence and the epistemic competence for tlahi(§9: 445).

Thus, themotive strengthto satisfy a demand is calculated asurgeq
(generalCompetence competencg), i.e. the product of the strength of the urge and
the combined competence.

For a more sophisticated selection of goals thae hia be fulfilled at a certain
point in time (because there is a limited windowopportunity), the motive strength
should be enhanced with a third factorgency The rationale behind urgency lies in
the aversive goal created by the anticipated failof meeting the deadline. The
introduction of such an aversive goal benefitstegies that reach the actual goal in a
timely fashion. (99: 448)

The urgency of a motive related to a time limit icble estimated by dividing the
time needed through the time left, and the motitrength for a motive with a
deadline can be calculated usingrgeq + urgencyy) - (@eneralCompetence-
competencg), i.e. as the combined urgency multiplied with tlwembined
competence (99: 444).

The time the agent has left to reach the goal carinferred from episodic
schemas stored in the agent’s current expectatidmdn, while the necessary time to
finish the goal oriented behavior can be determifredh the behavior program.
Obviously, these estimates require a detailed ipation of things to come, which is
difficult to obtain without language. Not surpriglg, animals do not seem to possess
a sense of urgency (99: 447).
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Figure 1.18: The structure of a motive

Because only one motive is selected for the executf its related behavior program,
there is a competition between motives—and the &intakes it all. A neural
mechanism to identify the strongest motive (99:-458) might work as follows: For
each motive, there is an input indicating its carrgtrength, calculated as explained
above, and an output that determines if the madtiveelected or not. The strongest
motive is found by inhibiting all inputs with a sigl of the same strength. The value
of the inhibition is then increased in small ste@s,long as more than one input is
active. Eventually, only the strongest input sigsatvives. In the case that the
strongest motives have similar strengths, it migdtpossible to miss the difference
and end with no active input at all, in which cdke process is repeated with a
smaller increment. (This works provided that thare no two motives aéxactlythe
same strength, which usually does not happen anttl d®e avoided altogether by
adding a little bit of noise). The input value bétremaining motive is then amplified
and propagated to the output to show that the mdtas been selected. This method
is relatively fast for big differences between metistrengths and takes longer to
resolve conflicts between motives of similar stiténg

The motive selection mechanism is periodically edpd (99: 452) to reflect
changes in the environment and the internal staftése agent. To avoid oscillations
between motives, the switching between motiveaxed with an additional cost: the
selection threshol@99: 457-473). The selection threshold is a bahasis added to
the strength of the currently selected motive. hélly, to avoid that a motive with
zero strength keeps on being executed, the thréskale issubtractedfrom all
other motives. This amounts tolateral inhibition by the currently selected motive,
applied to its more unlucky siblings (99: 467, 470he value of the selection
threshold can be varied according to circumstances)dering the agent
‘opportunistic’ or ‘stubborn’. The selection thredth is a modulator that can be
considered part of the emotional configurationhef sigent. (99: 473). By letting the
activation of motives spread into the connectedlggobehavior programs and
episodic schemas, it is possible to pre-activaseitable context for perception and
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planning (99: 474-475). If the inhibition suppliddy the selection threshold is
allowed to spread too, it might suppress memoryerdgmot related to the pursuit of
the currently selected motive and tliasusthe agent on its current task (99: 478).

1.8.3 Intentions

As explained above, intentions amount to selectetives that are combined with a
way to achieve the desired outcome. Within thetf=dry, anintentionrefers to the
set of representations that initiates, controls stnactures the execution of an action.
(Thus, it is not required that an intention be cimss, that it is directed onto an
object etc.—here, intentions are simply those thitgit make actions happen.)

Intentions may formintention hierarchieg(Strohschneider 1990, p. 62), i.e. to
reach a goal it might be necessary to establiskgsals and pursue these.

An intention can be seen as a set of the followimgponents:

- the desired goal statg

- the current state of the intention, which marksabtiial start statg,

- the history of the intention, which is a protocdlthose actions (external and
internal) and events that took place in the contdéxhe intention execution; the
current state, marks the end of this protocol; this is neededdarning

- the plan (a sequence of triplets leading figro s,)

- the reason behind the goal state (instrumentality given by connections to
higher level goals or directly to urge indicators)

- the timet,, where the goal has to be reached by (which détesva deadline and
thus theurgencyof the intention)

- the timeteminusthat it will probably take to reach the goal

- the importancei of the intention (depending on the strength of thetive
associated with the goal statg

- the estimated competenay to fulfil the intention (which depends on the
probability of reaching the goal)

(Do6rner 1988, p. 268, Detje 1996, pp.71)
Intentions are not necessarily a combined datactsire; they are just those
representations that are used during the pursaitgofal.

1.8.4 Action

The Rasmussen laddginamed after Danish psychologist Jens Rasmus$88) 1
describes the organization of action as a moveinetwteen the stages skill-based
behavior, rule-based behaviandknowledge-based behavior

- If a given task amounts to a trained routineaatomatismor skill is activated; it
can usually be executed without conscious attergi@hdeliberative control.

- If there is no automatism available, a course dioacmight be derived from
rules; before a known set of strategies can beieghpthe situation has to be
analyzed and the strategies have tad@pted

- In those cases where the known strategies arepptitable, a way of combining
the available manipulations (operators) into reagha given goal has to be
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explored at first. This stage usually requires @neposition of behaviors, i.e. a

planning process.

In the Psi theory, the Rasmussen ladder receiva@iglat modification: the first
two stages are being regardedinding (perhaps adapting) an automatistie third
is planning (99: 508-512). (This distinction is somewhat samito the one by
Rosenbloom and Newell, 1986, in&dgorithmic/knowledge-intensive behaviand
search/exploratiorbehavior.)

Dérner adds a third stage to automatism and planm@ixploration. Currently, the
explorative behavior of Psi agents amounts to greementation behavior, called
“What can be dorie The main part of “What can be done” is a triadeerror
strategy, which starts at those objects that arst mccessible and least explored. (It
might also be possible to learn by observation,thistis not only less goal-oriented
but also requires the ability to infer from theiaws of other agents onto own
behavior.)

For problem solving, Psi agents first attempt talfan applicable automatism. If
this fails, they switch to planning, and as a tasbrt, they perform actions randomly
to learn more about their environment.

1.8.4.1 Automatisms

An automatism consists of an already well estabtissequence of actions, possibly
interleaved with perception to allow for (automatitight adjustments. Automatisms
may be expressed by behavior programs and amountchtined reflexes
(“Kettenreflex”) (99: 95). Ddrner estimates thatmaohan 90% of human behavior is
made up of automatisms (99: 94). Because they doegmire attention during the
course of execution, they might run in parallelech other and to more attention
demanding processes (99: 483)—as long as no confieed to be resolved or
unexpected things happen.

Automatisms can be found by looking (in the givestwork of knowledge
consisting of interrelated behavior programs andogfic schemas) for a connection
between the current situation and a goal situafiiedicated by an urge as described
in the previous section) (99: 479-484). If we aatésthe current situation and let
activation spread along thpor-links, we may check if the activation reaches algo
situation that is related to current urges, and thge the path of the activation as a
behavior program (99: 482; 02: 93).

1.8.4.2 Simple Planning
For many problems, a behavior program or episodi®mma connecting the current
situation and the goal will not be known, and tiger&t will have to construct a new
plan. (99: 485-506) A plan is a sequence of actions &t as transitions between
situational states, leading from the start situatma goal situation, and to find it, the
agent has to traverse the known situation spacealde a complete search is usually
infeasible (99: 490-492), the agent has to narrowrdthe situations and operations
that are considered for inclusion in the plan. Sadteuristics might be decomposed
into a number of sub-problems (99: 487):

- the selection problemwhich actions should be chosen (i.e. which trforss

should be considered)? For instance, the agendcdetide to minimize the
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distance to the goal, to maximize the distance fthenstart, to select the most
well-known actions or to maximize the overall likelod of a behavior sequence
to succeed etc.

- thebreak criterion when should the current attempt to find a patlaleendoned?

- the continuation problemat which position and with which transition shddhe
search be continued after a abandoning a previters)st?

- thedirection problemshould the search begin at the start, the goglrcaminent
situations that could possibly become a link betwestart and goal or at a
combination of these? For instance, if the goaledl known, the agent might opt
for a backward search (99: 504) or combine forvwemarch and backward search.
In many cases, however, there are many possible gmaatisfy a given demand
(for example, many sources of food), and backwagaich is not applicable. (99:
493)

As an example strategy (a certain solution of thava problems), &ill-climbing
algorithm is described: (99: 496)

“Hi11 Climbing Planner”

1. choose current situation as start

2. until ;ti{t = goal or behavior program from the current start to the goal
is known:

3. if there is no 7ist of operators for current start

4, create an operator-]ist containing all operators applicable to
start

5 remove all operators that have been already been tested on start

6. 1if operator-Iist is empty:

7. if there is no preceding, at least partially untested situation to
start:

8 end with failure

9. else (i.e. there is a known preceding situation):

10. make preceding situation the new start (i.e. backtrack)

11. else (i.e. operator-7ist is not empty):

12. %Qp1y all operators in the operator-list, on start, store result-

st

13. chogse element of the result-Tist with the smallest distance to the
goa

14. 1f the distance is smaller than the distance from start to goal:

15. make the element the new start situation; mark operator as
tested

16. else:

17. mark all elements of the result-]list of start as tested; empty
result-Tist

18. repeat (until start = goal or behavior program from start to goal is
known)

19. end with success

Algorithm for ‘hill climbing’ (99: 496, fig. 6.10)

The hill-climbing algorithm attempts at each stepréduce the distance from the
given position to the goals much as possibla distance measure could be spatial as
in a path-finding task, but it could be derivednfrehe number of features shared by
two situations (99: 500), possibly corrected byghts on the features according the
given motivational context (99: 503). If it arrives a situation that presents a local
optimum where all possible transitions increase digtance to the goal again, it
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abandons that situation and returns to a previbuat®n with untested transitions. If
a problem requires to increase the distance tgalétemporarily (as for instance the
“Rubic’s cube” problem), then a solution can notfbend with the given algorithm.
In other words: the hill-climbing algorithm is ngtiaranteed to find a solution, even
if one exists. Thus, if the agent has to monitergtrategy, and if it yields no result, it
should disable it in favor of a different approg®8: 499). Of course, hill-climbing is
not the only problem solving strategy applied bynlamns. It is just an example of a
possible method; human subjects constantly repnogiazch algorithms and even the
meta-strategies used in such reprogramming (99 499
Alternative strategies in planning consist in tlkeeasive use ofacros(99: 493),

that is, of hierarchical behavior programs that lbamecombined. The construction of
thus macros can be facilitated by using a langtagtructure the behavior programs
and their situation objects into categories. Somodlpm solving strategies that also
make use of language, lik&PSand “Araskam”, will be discussed in section 1.10.6.

1.8.4.3 “What can be done?” (“Was kann man tun?”)— the Trial-and-

error strategy
If no automatism or plan can be found, becausétiogvledge or planning strategies
do not yield a result in a reasonable time, thenbgéll have to fall back into an
explorative behavior that is called “What can beel®y. The goal of this strategy is
the addition of new branches to already known bielsy which leads to more
general behavior programs (99: 129).

One way of doing that consists in examining objétthe vicinity of the agent in
the order of their distance and check to which deghey have been explored (i.e. if
it is known how to recognize them and how they oespto the available operators).
Unknown objects are then subjected to trial-andrelrehavior. If the objects of
interest are explored, the agent performs locoradntions that preferably bring him
into the vicinity of further unknown objects (0288, 101). “What can be done”
extends the agent’s knowledge, especially earhitsnlife, but in a hazardous
environment, it might prove dangerous, becauserandom exploration of terrain
and objects can lead to accidettts.

1.8.5 Modulators

A modulator is a parameter that affects how cogmifirocesses are executed (99:
535). Dorner’s Psi theory currently specifies fouodulators: The agentactivation

or arousal (which resembles thascending reticular activation systeim humans)
determines the action-readiness of an agent. Theepiial and memory processes
are influenced by the agenttesolution level The selection thresholdletermines
how easily the agent switches between conflictimgritions, and theampling rate
or securing thresholatontrols the frequency of reflective and oriemmatbehaviors.
The values of the modulators of an agent at a gitiere define its cognitive
configuration, a setup that may be—together witke tturrent settings of the

47 |f an agent is put into a dangerous world withprg-defined knowledge, it should probably
be taught and protected.
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competence regulation—interpreted as an emotidatd §€99: 561). Interestingly, the

modulation system also picks up some of the natsrigide-effects commonly

associated with emotion. For instance, while aufailto accomplish an urgent task
should increase the activation of the agent to dpgeits actions and decisions, the
consequently lowered resolution level (which is sarnat inversely dependent on the
activation) may cause it to fail in achieving itsafj leading to even more urgency
and activation.

Another scenario might be characterized by an itambrgoal, but with a high
uncertainty that needs resolving, which at the séime is accompanied by a low
competence estimate. This leads to a low likelih@stimate for attaining the
explorative goal, causing the agent to choosefardifit, substitutive behavior that is
likely to give it a competence reward, typicallynsething the agent has explored
very well already. But because the agent avoidevidhg strategies that could lead to
the original, more pressing goal, its competengelleontinues to plummet, making
future attempts even more improbable. Dorner giiese examples and noté§Ve
have introduced the modulation system to make #¢ha\dor regulation of Psi more
efficient, and now we must realize that its behavionder certain circumstances—
does not improve at all, but rather that Psi gett®ivicious circles and in states that,
would we witness them in humans—would call hadtess anger, rage, panic,
dogmatism and resignation(99: 549)

Individual agents may differ in their “personalitiebecause of different settings
for the defaults and ranges of modulators (99: Z&8), which may also depend on
the experiences of the respective agent duringetime.

1.8.5.1 Activation/Arousal

The activation modulator, sometimes also refereegisarousal (02: 217) is a control
parameter for the agent's readiness for action. Aigker the activation, the more
pressing it has become to react to the situatiohaad, and faster decisions are
sought. Thus, a high activation will tend itthibit the spread of activation in the
perceptual and memory processes—and consequemlyer f details and less
schematic depth is retrieved. The activation iseise to the resolution level, for
instance

resolutionLevek1-+/ activatiol (1.9)

Obviously, this relationship is not linear: a laf@nge of activation within the lower
range might have only a small influence on theltgsm level (99: 536).

The action readiness of an agent is necessaribrsevto its resolution level: fast
action leads to less time for deliberation and g@gtion, so the depth and width of
retrieval, planning and perception are more limited

1.8.5.2 Selection threshold

When an agent has conflicting goals, the varyingngiths of the respective motives
may sometimes lead to an oscillation in its behaviplans can be abandoned
halfway to pursue other goals which have just bexartittle more pressing. This is a
potential source for problems, because the praparand initial steps of the
interrupted behavior might have been wasted. Josdgine an agent that is
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undertaking a long journey to a water-source, dalyabandon its goal a few steps
short of reaching it, because it just started &b feingry. Therefore, it makes sense to
display a certain degree of determination in follogva motive, and this is delivered

by theselection thresholgarameter (99: 457-473).

The selection threshold is a bias that is addeth¢ostrength of the currently
selected motive. Because it makes it harder tochwitotives, oscillations can be
avoided; the details of its implementation are akpmd in the context of motive
selection (1.8.2).

Note that a high selection threshold leads to ‘lstwbness”, a low one to
opportunism/flexibility, or even motive flutterinometimes, the selection threshold
is also called “focus” or “concentration”.

1.8.5.3 Resolution level

Perceptual processes and detailed memory retr@aratake up a lot of processing
time. In a dynamical environment, this time shobkl adapted, depending on how
urgently the agent needs to arrive at a decisind, this is achieved by modulating
the degree of resolution at which these processas place. The resolution level
parameter affects HyPercept; a high setting leadignorance towards smaller details
(99: 148).

Experiments have shown that a (stress induced)rlosgslution level may indeed
lead to increased performance in problem solvingasbns (99: 570): in a
simulation, where subjects had to extinguish birgts fthe reduced resolution lead to
improvements due to a better overview (Dorner afiedfBr 1991).

The resolution level might also have its hand imecreative processes. Because
a low resolution level tends to miss differencésan lead to over-inclusive thinking,
which may result in the formation of new hypothe@% 571).

1.8.5.4 Sampling rate/securing behavior

While Psi agents pursue their plans, they perctigeworld very much in terms of
their expectations. In a dynamic environment, haavethere are frequently changes
and occurrences that have not been brought fordnbgction of the agent or that are
unexpected side effects. To react to these charnfgesagent should look for the
unexpected; it should regularly interrupt its roe8 and perform aworientation
behavior This orientation is implemented as a series diab®r programs and
extends from low level perceptual routines to thetivation of the Reflection
procedure to identify possible alternative intetatiens of events in terms of
episodic schemas. (See algorithm.)
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“Securing behavior”

Uﬁdate situation image
check expectation horizon
if something unexpected has been found:
create exploratory goal

. exploration (takes place elsewhere)
check perceptual background
if new events have occurred:
create exploratory goal

. exploration (takes place elsewhere)
0. perform Reflection; look for new ongoing episodes;
set up new expectation horizon

RPROWoco~NoOuUuIRhwWN R

Algorithm for securing behavior (99: 521, fig. 6)14

Unknown objects receive attention by cuing theno iatlist of items that warrant
further examination. (It will be necessary to idBnthem by their spatial location or
their perceptual mode.) Then, the activation ofdbent is increased, which raises its
action readiness and increases the strength aéxttegnal explorative motive at the
cost of deliberation. (The increased activation amt® to something like the
ascending reticular activation systémhumans.) (99: 212-213)

The frequency of the securing behavior is inversidyermined by the modulator
securing threshold“Sicherungsrate” or “Schwellwert des Sicherunghadtens”),
(99: 518-519), sometimes also calleampling rate(“Abtastrate”) (Dérner, Hamm,
Hille 1996). The sampling rate determines the shodd, at which the securing
behavior becomes active, and it is proportionaht strength of the current motive,
i.e. in the face of urgency, there will be les®ntation. Furthermore, the value of the
securing threshold depends on the uncertaintydrctiirent context: an undetermined
environment requires more orientation. The trigggidf the orientation behavior can
be implemented by using a self-exciting loop thatds up activation over time, until
it exceeds the securing threshold. Then, the Isofeset and the securing behavior
performed.

1.8.5.5 The dynamics of modulation

The attainment of goals signals efficiency to tgerd, while failure is interpreted as
an inefficiency signal. The combination of thesgnsis (as a kind of floating
average) determines the competence of the agahg low competence will increase
the agent’s urge to seek efficiency signals. Ireaafsconflict, low competence will
increase the likelihood of flight (because the agestimates its chances of coping
with a dangerous event lower), high competence wifler the agent towards
exploration instead.

Likewise, if the agent’s expectations of the outeonfi its actions or the behavior
of the environment are confirmed, its certaintyinsreased, while violations of
expectations reduce it. If many such violations emeountered, the urge to reduce
uncertainty increases. This urge will increasedgent’s tendency towards specific



62 Dérner’s “blueprint of a mind”

exploration and the securing behavior (looking fanknown and unexpected
elements).

High levels of urges (either from the competenceestainty urge, or from any of
the other demands of the agent) will increase thigation. A high activation leads to
increased action readiness (including the relathgsiplogical activity). It also
increases the “stubbornness” of the agent to iseréts commitment to the current
task, and in turn it reduces the resolution lewehich speeds up the cognitive
processes at the cost of details.

Flight Specific Securing Acquisition of

Exploration Behavior Efficiency Signals Unspecific Sympathicus Syndrome/

further Behavior Modulation

Resolution Level

Selection Threshold

Urge for Urge for
Competence Unceﬂalniy Reduction

Q Q
‘f \-

. Certainty Uncertainty
Efficiency Inefficiency Signals Signals from other
Signals Signals (Confirmation (Disconfirmation Motivators

of Expectations) of Expectations)

Figure 1.19: Relationships between modulators $38)

The modulation model of emotion has been evaluated doctoral thesis by Katrin

Hille (1997). Hille built an abstraction of an eradiment consisting of a city with gas
stations, wells, passages that are open only &igentervals, and roadblocks. Some
streets in the city may damage the agent becauseiofooor condition, and there are
even areas where falling bricks pose a loomingathihile the street layout remains
constant, the additional conditions may change dime and are occasionally

announced by road signs. Thus, the agent gainsdeantage, if it adapts to the

changes in the environment and learns which sigmaldict these changes.
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Figure 1.20: Environment for Psi agents: city Wid@9: 552)

The agent behavior was modulated by parameterseiection threshold, sampling
rate, activation and resolution level; it could $feown that agents with a working
modulation system where far more successful irsfsétig their demands over time
than agents with random modulation or a set ofamthat was fixed at high, medium
or low levels. (Apparently though, there has beererperiment using a fixed, but
optimized set of modulation parameters.) (99: 551}5

1.9 Emotion

The notion of emaotion in psychology is extremelyenegeneous. Emotions are for
instance described as instincts, as the inner eetisp of motivations, the result of
stimulus checks, models of behavior, part of aiocomim of mental entities (i.e. there
are degrees in how much an emotion is an emotioadrdinates in a three
dimensional space (with pleasure-displeasure, ataadm and tension-relief as
dimensions) etc. (Osgood 1957; Traxel, Heide 19@a&rd 1981; Ortony, Clore,
Collins 1988; Ekman, Friesen, Ellsworth 1972; Rikc1994). Ddrner rejects this
terminological and conceptual heterogeneity (withwecessarily denying the validity
of these approaches) and suggests taking a detsigoesinstead: to discuss how a
system had to be built that shows the behaviorthaegroperties we want it to show
in the context of emotion (99: 19-21).
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1.9.1 Emotion as modulation

In the context of the Psi theory, we are lookingmarily at emotion as the
modulationof behaviors and inner processes (99: 561). D&r@notion theory is
centered around the modulation of behavior; thenitivg and external behaviors of
the system are seen as being accented by the seiodfilator parameters. An
emotional state is determined by a certain conéifon of these parameters.
Emotions are not exact points in the space of iehawdulation, they are rangés.

Because there is always a certain configuratiorgait be said that while the
different types of emotion vary in strength, theteyn is always in an emotional state.
The regulation which leads to an emotional statealssed by environmental and
internal circumstances; emotion is an adaptatioat tmakes use of limited
physiological resources in the face of differentimnmental and internal demantfs.

For Dorner thefeeling aspect of emotions is most important (99: 558-58%)
course, we would not say in every situation thatpeeceive a feeling, but this is due
to the fact that typically only the extreme setingnd changes of emotional
configurations are remarkable enough to be explipérceived and conceptualized.
While emotions “color” action and thought, they adso be unconscious; in current
Psi agents they are always unconscious, becaugardaot reflected (99: 563).

Note that a feeling is not just a modulation, buhadulation of something, of a
certain content, which determines the directiorafaffect. Thus, emotions may be
understood as bound to one or more motives (99. 562

1.9.2 Emotion and motivation

While emotions are not a class of motives, thoughtsnemories, they are also not
separate from these, they are not independent m®dual the cognitive system.
Emotions are araspect of thoughts, perceptions, memories, motives, datis
processes (99: 564-565). As Doérner putslit: Psi, emotion relates to perception,
planning, action etc. like colors and shapes relatehe objects. An object always
has a certain color and a certain shape, othenitiseould not be an object.

All psychological processes are modulated in this;Reey are always executed
with a certain securing threshold (sampling rateeaf/ironmental changes), a certain

48 Ddrner’s emotional model might have its rootstia three-dimensional modulator model of
Wilhelm Wundt (1910). Here, we have the dimension$ pleasure/displeasure,
tension/relaxation and arousal/calm. Since an emalticonfiguration is (roughly) made up of
pleasure/displeasure (which are separate dimernsiactvation/resolution level, certainty,
competence (coping potential) and selection thidshtbe model is actually quite distinct.
There are also similarities, however, to the thdmeensional model of Traxel and Heide
(Traxel 1960, Traxel, Heide 1965), which replacesundf's tension/relaxation by
submission/dominance (this dimension has a siméliect as the competence/certainty
parameters).

49 The role of emotion in communication is not deniigdDdrner, it just is not central to the
theory. Also, emotions here mean primary/basic @met complex social emotions like
jealousy, envy, triumph are basic emotional sestwhich have the mental representation of a
social relationship as the object of an affect. ldwer, this is not discussed here.
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degree of focus (“Konzentrationsgrad”) and a centactivation. Emotions are the
specific form of the psychological processes.

It is not possible to remove an object without alsmoving its color and shape.
In the same way, emotions do not remain if actiplanning, remembering,
perception are taken away(99: 565)

It is important to make a clear distinction betwesnotion and motivation: the
motivational system determineghat has to be done, emotions influertoaw it is
being done (Hille 1997). An example for an emotmight be fear, which determines
a disposition for certain behavior, a level of aation, an influence on planning,
memory and perception via the resolution level, seeuring threshold and the
selection threshold, and which modulates numerdugsiplogical parameters to
facilitate flight etc. Emotions like fear are vedyssimilar from motivational urges
like hunger (which specifies an open or definitasumptive goal, accompanied with
a displeasure signal).

1.9.3 Emotional phenomena that are modeled by the P si theory

The Psi theory implicitly covers a broad scope ofodonal phenomena: affects
(short lived, usually strong emotional episodeschhare directed upon an object),
moods (extended regulatory settings of the cogmisiystem), behavior dispositions
and perturbances (emotional episodes that stem faomunproductive conflict
between different cognitive behaviors). There aeegal publications of Dorner and
his group that discuss examples of emotion andtlieery itself, where various
aspects and examples of emotions are mentionedomsiderable detail. If we
conceptualize a particular emotion, we are usuedferring to certain ranges of
modulator settings and the involvement of differemgnitive sub-systems, for
examplez°

- Anxiety (negative) andpleasant anticipatiorare states of expectation with an
often unclear and complex background, which migéat dausing pleasure or
displeasure (depending on the competence levelchwimarks the coping
potential) (99: 196-198).

- Surprise, startling, reliefand disappointmentare all related to evaluations of
matches of the anticipated events in the agentise@ation horizon to actual
events. A surprise is the reaction to a motivatiordevant event that was
unexpected. A startle is an even stronger reattignsudden unexpected change,
which strongly increases the activation of the agemd triggers an orientation
behavior. Relief is the reaction to an anticipateeersive event failing to
materialize, and disappointment is the state thavoked by missing an expected
positive event.

- Many social emotionsare related to empathy ateditimity behavior(i.e. affects
that are directed onto the agent’s need for extema internal legitimity signals).

50 This is not a complete list, emotions that are described here do not necessarily
correspond to limitations in the theory—it is jasshort reference to what has been covered
in DOrner’s books.
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These are, together with supplicative signals,rpggssites for behavior that has
social interaction as its goal (Dérner et al. 2001)

- Negative affect behavior likanger(99: 560) can be explained as the prevalence
of displeasure signals together with a specific atatibn (here: a high activation,
which is accompanied by a low resolution levélpanger is characterized by the
failure to attain a goal in the face of an obsta€ke low resolution level during
an episode of anger causes a diminished problewngotapability. The higher
urgency caused by the frustrated motive incredsesattivation, which in turn
leads to more impulsive action and narrowed obsienva(99: 561)

- A low resolution level is also typical fdear (99: 178). Fear is triggered by the
anticipation of aversive events combined with higizertainty and is related to a
low securing threshold: a fearful subject tendgpésform frequent orientation
behavior because of the high uncertainty (99: 52#)s constant re-exploration
often leads to discovery of even more uncertaifty. instance, if the episode of
fear is triggered in a dark place, the attempteiuce uncertainty by increasing
the orientation behavior might lead to further msdy, and the resulting vicious
circle causes an emotional perturbance. Fear dschlaracterized by focusing due
to a high value of the selection threshold (99:)47%ghich also increases the
inflexibility of the agent’s behavior (99: 473). &anxiety episodes decrease the
competence of the agent and increase its tendendlee the situation; if the
escape is successful, the subject tends to avegk thircumstances in the future
(99: 562).

- An explanation fohopemight be given as follows: in the face of a badation,
displeasure etc., an event connected to a poss#iterment is perceived. All
attention is focused on the corresponding threathénexpectation horizon and
the agent attempts to perform actions that leabeaesired outcome.

- Grief is triggered if something very important (stronglysociated to fulfillment
of a demand), disappeapgrmanentlyfrom expectation horizon of the subject
(99: 805).

1.10 Language and Future Avenues

The Psi theory attempts to be a complete constmisti model of human mental
abilities, and naturally, the territory covered hyis limited. Current Psi agents
successfully display numerous problem solving #édi autonomous learning,
hierarchical perceptual processing and even enaltiorodulation, but they lack
(among many other things) self-reflection, meta-aggement abilities, flexible

51 Usually, Dérner’s model mainly discusses the affespect of emotions like anger and fear,
but the object of these emotions is a crucial campti undirected anger is typically

distinguished asage and undirected fear angst That is, the conceptualization of such
emotions should not only consist of modulationftffebut also of a certain associated
cognitive content, which is the object of this affeAlso, a complete description of anger and
rage may perhaps require a model of sanctioning\beh
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planning. So far, the Psi agembesnothing—itjust happensn the Psi agent (99:
483).

Many current deficiencies of the agent may be awee by equipping it with
specific behaviors. Reflective behavior, for inganwould greatly improve if the
agent would possess a mechanism to evaluate itegote (which is part of the
theory, but not of the current implementation). Buive pose the question for self-
reflection at a higher cognitive level (i.e. stépwards the constitution of a personal
subject), we have to go beyond such meta-manageriBia-management is not
self-reflection, because it does not require thenago have a concept of a self.
Dérner’'s answer to this question, as well to thenaleds of more sophisticated
planning, creativity, mental simulation is invardigblanguage. Self-reflection is not
identical to the language capability, of courset lamguage is a tool to form and
maintain the necessary conceptual structures within cognitive apparatus to
facilitate self-reflection. Thus, language fulfite/o tasks for the cognitive system:
first of all, it organizes its mental representatidy supplying handles on concepts,
aiding structuring and providing a set of spedifimking and retrieval strategies. On
the other hand, language allows communication aaperative concept formation
with other agents.

Dérner’'s ideas on language are still somewhat @ir tftormative stages, despite
some thesis projects which have been undertakehisngroup (Kinzel 2004,
Hammer 2003), they are much more preliminary thanirfistance the notions of
emotion and perception. Even though Doérner waras this topic is in need of a
much more thorough discussion (99: 804, 814) aritt g@ome way from maturity,
his ideas are still very instructive and interegtiham not going to cover Ddrner’s
language concepts in full here, but | will try toga brief overview and introduction.

1.10.1 Perceiving spoken language

HyPercept is not just a way of recognizing visumaages, but may also be applied to
acoustic stimuli to recognize phonemes, words agwntesices. The input to the
HyPercept process would be acoustic low level itfplike a power-spectrogram
(“cepstrum”) of the speech which is to be recogwiz€ertain aspects of this
spectrogram would, together with the current cantastivate phoneme-hypotheses
(bottom-up), which can then be tested (top-downatbympting to interpret the input
accordingly. Likely phonemes act as cues for worplotheses (bottom-up), these as
parts of sentence-hypotheses and so on. Thusntlevoven bottom-up/top-down
processing of HyPercept acts as a grammatical p@@98e597-599). Even though this
is a very superficial and rough model of the pracestween phoneme recognition

52 Because stimuli sometimes need to be re-visitedr@interpreted in order to interpret them
as the correct phonemes in the given context, thieektept mechanism should not work
directly on the input of the cochlear nerves, beitdr on a pre-processed representation that
acts as a temporary buffer. Such a buffer woulthkgohonetic loop (Baddeley 1997, p. 52ff).
Doérner mentions the same process as the simultamzaf phonetic perception (99: 741).
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and semantic interpretation, it hints at the gditgraf the perceptual principles of
HyPercept.

1.10.2 Language and schemas

A spoken, written or gestured word of a languageaty other sign that stands for a
concept) is represented by the agent in the form sénsory schema. This sensory
schema is associated with the sensory object scieahé denotes, and to the motor
schema that allows for its production (99: 600-601)

There can be many word schemas connected to a&esiayd. This polysemy, a
“semantic disjunction”, is described as the “thadwtic character of general terms”
by Dérner (99: 604) and extends over behavior @nogras well: a word schema may
contain many behavior programs (99: 602). Semaligjcnctivity leads to a situation
where there is a reference, but the retrieval giedsth ambiguous result. Such
ambiguities have to be resolved if the result hasbe made explicit in a
communicative context, but during deliberation amiring an unfinished
communicative act, the ambiguity needs to be mgntapresented. This is achieved
by not just retrieving a single reference (for &amste the most active one), but by
highlighting afield of object schema#f those object schemas are mutually exclusive,
then only the one with the strongest activation i¢iwhis determined by context)
comes to attention. The other object schemas ifielteremain active, however, and
if the context changes (for instance by adding tamlthl perceptual or informational
cues later on), another schema might become thegetst competitor in the field and
win the attention.

If we look at grammatical language, we notice thtgiect schemas are represented
by nouns. Verbs and prepositions open up empty gl¢tohlstellen”) in schemas
that have to be filled in later on by a binding gess (99: 614, 625). The constraints
of the object classes that can be filled into thepen schema slots are learned
successively during the acquisition of communieGtempetence in the language.

1.10.3 Understanding language

During an attempt to match a language symbol t@raangement of episodic and
object schemas, a lot of ambiguities have to belved. This is done by a variety of
mechanisms:

- If many possible objects match a given ambiguoois sften the intended one can
be found by choosing the one that has the higledstance in the giveoontext
Whenever the agent encounters an object, eithgrenception or during the
communication, the respective schema receivesaittiyy which does not cease
immediately but remains for a certain amount ofetinthus leading to a priming
effect. Such primed schemas add their pre-actinatidhe activation they receive
during the ordinary retrieval process, which inese=athe likelihood of them
filling the open slot.

- An ambiguity might also be filled by prototype This is similar todefault
reasoning(Brewka 1989).
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- Another way of resolving an ambiguity consistsaoking for a particularly well-
proportioned solution, one that is aestheticallptherwise appealing.

- It might not be necessary to have a stable resoluif the ambiguity. In many
cases, it could be preferable to constantly angutatly switch between possible
solutions. This “flickering” is sustained until ai¢e’ solution is found, which
then takes precedence over the field of alternstive

- Not every ambiguity needs resolving, sometimesrahiguity may simply being
left open. (99: 626)

Like the recognition of words, the idea of languagelerstanding has hypothesis
based perception at its core. Language understgnainDdrner suggests it, amounts
to running a HyPercept process on a phrase steugi@mmar (99: 633, 637). The
HyPercept mechanism is again cued by initial festufor instance relation words
(99: 631). The open slots in the schemas associatdide relation words are then
filled in based on the current pre-activated contéke solutions are checked for a fit
with a dynamical world model capturing the commatiie content, and the

resulting hypothesis structure is expanded andeevuntil a stable result is reached
(99: 650). As during other perceptual tasks, thd>étgept algorithm works as a
grammatical parser and the syntactic schemas oflahguage can be treated as
specific episodic schemas (99: 636).

Understanding does not always require completeirgarsThe main goal of the
recognition of an utterance is its disambiguatibaf is, the construction of a schema
that is described by the communicated symbols, evhéiropen slots (“Hohlstellen”)
have been filled in (99: 640). Often, single woats sufficient, because they can,
based on the current context, evoke complete mingtdescriptions. Often, if the
context and the individual symbols do not yieldato interpretation, the process of
parsing itself may produce additional structuralfoimation that aids in
disambiguating the utterance. (As a graphic examiake nonsensical terms in
children’s songs or in poems like the famous “Jabbeky” in Lewis Carroll's
“Alice in Wonderland”, where word forms become disuble as names, places,
adjectives, roles, actions performed unto an objescriptions of locomotion etc.
because of their places in the narrative strudtsedf (99: 644).)

Language understanding is often accompanied by eth@cation of mental
imagery. But this is not necessarily and alwaysddee: it is often sufficient that the
relationship between the communicated symbols baddferenced schemas can be
established by the hearer. These schemas caniggv®rimagination, but they do not
have to (99: 645-646), it is enough if the heameows that the connection to the
references has been established without evokingetileeence (the associated object
schemas) itself. In some instances however, theriscreen will be a necessary tool
to construct and simulate the communicated scersergh a constructive process is
sometimes indispensable to understanding. (99: GA8),

In some other theories of cognition, there is domobf a distinctpropositional
layer, which is separated from the conceptual referenEes instance, Anderson
(1996, p. 141, 356) suggests an ‘amodal memory’jclvicovers exclusively



70 Dérner’s “blueprint of a mind”

relational representations without references ttexd. Dorner does not subscribe to
this notion. While he agrees on the use of poinfiees references from abstractions
of relationships into instances of these), he seeseason for an area of memory
where relations are handledthoutsuch pointers.

1.10.4 Learning language

The first step in learning a language consiste#@thing by pointing99: 604), where
one communication partner directs the attentiorthef other to an object and a
‘guessing game’ on the intended meaning ensues.s,Thanguage learning
presupposes a mechanism for shared attention éeacher that possesses a mental
model of what is already known by the pupil (toallfor the incremental learning of
complex, combined concepts).

Teaching by pointing does, of course, only work fam-abstract objects and
simple spatial relationships. Abstract and compiéjects have to be taught using
relations to already established representationso,Asome classes of words
(pronouns, conjuncts, function words like “becaysafe not inferred by a direct
reference, but from the recurring context of thusie (99: 619).

1.10.5 Communication

Understanding between participants in a commumina always related to a goal.
This communicative intent is the main criterion fhe structuring of utterances (99:
684), often, it does not just include the currant-goal of the given context, but of
the “higher goal” (99: 519). Communicative goalslime:

- the goals of the agent in the present, past andefut
plans, reasons and probabilities in the presest,grad future
what is (has been, will be) the case
why something is the case (reasons)
conditionals (if and when)

Speaking, or more generally, language productices been treated relatively
superficially by the Psi theory (99: 651). Rouglityconsists of:
- identification of an abstract episodic schema fohatvis intended to be
communicated
- the retrieval of the respective syntactic schema
- the binding of the elements in the syntactic schemthe actual elements
- the activation of a behavior program for languagspction

There are several classes sthtementsSpecifically, we may distinguish between
assertions, questions, answers and imperativeSg30594).

Questions are a special type of communicativeiestdnd can be recognized as
such by the parsing process (99: 661). The purpbagjuestion consists in obtaining
bits of missing information from other agents (be tagent itself). In fact, asking
guestions is a behavior strategy that may leadh¢osatisfaction of the uncertainty
reduction urge (99: 676-680). Typical examplesudsiions are “Yes/No” questions,
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where a hypothesis is being constructed and praoptisat can be confirmed or

disconfirmed (99: 663). A “W” question requires tbetension of a schema with a
particular element: depending on the question {y#peEnglish and German mostly

marked by a specific question word), the “what/vehehy” questions ask for the

completion of open or ambiguous slots in an (ab&d) episodic schema. Examples
for such completions include reason, actor, objpmperties of subject or action,

instrumentality, origin of occurrence, goal, fitali(purpose), location, time and

underlying episodic schema.

Different languages vary in their number and défafation of the question
words. Often, the question words are polysemousy(ttefer to more than one
possible continuation of a schema), but each quesgipe indicates a preferred slot
for completion (99: 664-667).

Where from? Why? Where to?

place \4‘1 / -
—
place, / \me

Where? When?
Figure 1.21: What, where and why questions anda te&tionships to schema structure

Imperatives are meant to establish a goal in anatfpent. Those goals are not ‘final’.
They serve other goals (for instance the other ttgy@lemand for affiliation, its
avoidance of a threat or another demand satisfgcti®: 686-687).

Pleas are a more friendly type of imperative thatlude an assertion of
competence on the part of the communication pagndrthus might result in a rise
of self-confidence in the one asked. This effecplefis leads in many cultures to a
ritualization of pleading (99: 689).

Statements can be made more specific by annottigmm (99: 655-657). Possible
modifications of statements include possibility dimde, which means the expression
of an
- indicative
- conjunctive (in branches of expectation horizon)
- past, present and future (i.e. in protocol, in entrworld model or in expectation
horizon)

Furthermore, statements can be distinguished basedheir sparseness or
elaboratedness (which is depending on the disarabigyulevel that is meant to be
achieved), whether they are concrete or abstradf,they are meant as synonyms.
‘Hollow’ statements (open sentences) may act aisivias (99: 672).

Communicative utterances do not have to be litefatourse, but they might convey
the communicative intent by alluding to an analageituation. An extreme case is
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irony, where the communicative intent is made Vésiby stating the absurd. Thus,
incorporating the statement conveys an additionassage, which can be
disambiguated to reveal the actual intent (99: 659)

1.10.6 Problem solving with language

Language is an integral part of complex problenviagl (Dérner, Bartl 1998). Most
of the more sophisticated problem solving strategie too complex to work without
recurring to the structuring aid language providésr instance, sophisticated
planning that goes beyond the ruthless and untefieapplication of a single
algorithmic principle may amount to an “internabldig with oneself’ (99: 729). In
the following section, some typical human problaiving behaviors are outlined.

1.10.6.1 “General Problem Solver”
The General Problem Solvefor GPS for short) is a procedure that has been
described in a famous work by Newell and Simon ()98 consists in
- Making out the differences between the initialest@hd the goal state,
- ldentifying an operator to remove these differences
- If the operator is applicable, apply it. Otherwiaesub-goal is constructed, which
consists in obtaining conditions suitable for timplacation of the operator; the
sub-goal is then made the new current goal (99).707

The GPS has been very influential to cognitive niadeand has shaped the concept
of problem solving in the cognitive architecturesat (Laird, Newell, Rosenbloom
1987) and ACT (Anderson 1996, p. 250ff). HoweveRS5is not sufficient as a
model of human thinking. For instance, in many sa#iee inapplicability of an
operator will not lead to the establishment of & eib-goal but rather to abandoning
the main goal and the selection of a new main gbétner suggests viewing the
course of thoughts as something much more loosglnized, as a sequence of self-
imposed questions, imperatives and statements7@8). GPS is probably not the
paradigm that is followed by all human problem gudy it is just one possible
strategy.

1.10.6.2 Araskam
Dérner has suggested additional strategies, famarece a schema he has named
Araskam(Ddrner and Wearing 1995), which is an acronym“féeneral Recursive
Analytic-Synthetic Concept Amplification” “gligemeine rekursive analytisch-
synthetische Konzept-Amplifikation'(99: 718-720)
Araskam is not a direct approach from a given &itnato a goal, but rather a
diversive exploration bgbductive reasoningdt consists in the following basic steps:
1. For an insufficiently explored concept, retrieveptarts and super-concepts.
2. Add missing detail to the concept by attemptingramsfer elements from co-
adjunctive categories, as long as these elementsotaontradict already
established knowledge. (An example given by DoisietA flea is an insect;
another insect would be a butterfly. Since butesfhave a proboscis, fleas
might have a proboscis too(99: 719))



73

3. Attempt to identify relationships to other knowleggespecially episodic
schemas and super-concepts. (This might be done HyPercept process
that starts out with the original concepts andrthmw’ features.)

These steps might be repeated and used recurdiielpurpose of Araskam is the

discovery of previously unknown relationships thetn be employed for new
strategies.

1.10.6.3 Antagonistic dialogue

Sometimes, the goal of a problem solving processists in deciding on a single,
albeit complex question. In these cases, it isfokbtp adopt multiple viewpoints. An
inner dialogue between an advocate and an oppaoghe topic in question might
ensue, where both sides exchange arguments thekangined and weighted against
each other (99: 768). The resolution of the confietween those attorneys becomes
a sub-goal gaining importance on its own, and ig ttonflict remains unsolvable, a
meta-conflict might ensue that seeks to establiglay of settling the struggle or to
abandon it (99: 775-776).

These strategies can tackle a wide variety of prob| and with a meta-management
behavior that examines the progress made by theertly active strategy with
respect to the current class of problems, the agent display flexibility in their
application. Still, problem solving is not a singégeneral method. A Psi agent should
not have to rely on a fixed, limited set of preidefi methods, but eventually, it
should develop these strategies on its own andt aldeym (99: 727-728).

1.10.7 Language and consciousness

Currently, Psi agents are not conscious, and Ddikests them to animals (99: 740).
With more abstract thinking, which Dorner suggegiswork like an internal
guestion/answer game, agents may autonomouslyracgenw schemas not just from
environmental stimuli. Grammatical language is tbel that leads to a cognitive
explosion (99: 797), to conscious reflection (986-742) and to culture (99: 589).

Therefore, Dorner distinguishes the current stditanplementation and a more
future, more fully realized Psi agent as $tse linguaand Pscum lingua

The Psisine lingua(the agent in its current stage) possesses & iadhigcularistic
concept of the world. A Psium linguacould abstract the objects of its environment
into relationships of cause and effect, into thjngstors, instruments; it could
speculate and arrange its concepts into new waysré).

Dérner notes that consciousness is a very heteeogsnnotion (99: 789-791). It
comprises

- awareness

- attention

- readiness for action

- wakefulness

- state and degree of constitution of a conceptlbbgeeflection
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While most items on the list are already covereddme degree by existing Psi
agents, the reflective processes are not specifidl enough detail and probably
require language to work sufficiently. With langeag is possible to question current
strategies, and even current questioning strategies language also allows to
construct and employ meta-stratedgié<Dorner claims that thinking can not be
separated from knowing about the respective thaugfihus, verbal thinking
strategies (unlike the non-verbal problem methddstegies described earlier) are
represented in such a way as to be completely sibbesDdrner argues that certain
levels of reflection amount to the conscious awassrof the respective concepts (99:
723).

1.11 Psi agent architecture summary

Now that we have examined the individual componants structures of a Psi agent,
let us have a look at how these components makanuggent’s action regulation.
This section gives a summary on the interrelatiointhe elements of the Psi theory.
Naturally, because many individual parts have nett lyeen completely specified
within the theory, the architecture is somewhaginantary, and even some of the
parts that have been hinted at above have beenueffirst of all, this happens for
the sake of simplicity. For instance, in Dérnemspiementation, there is a module
that supplies facial expressions, but its integrainto the architecture does not aid
understanding the cognitive principles of the agtsdlf. On the other hand, many
relationships have not been specified explicitlyDirner's publications, and the
implementation in the actual agent seems to hayppdred ad hoc, so it would
perhaps be a misrepresentation to include a matsordte description here. A cut
down top-level view of the workings of the systesigiven below:

53 There is no reason that this should lead to aniiafregression, as some philosophers have
feared. Technically, meta-reasoning does not recuinew layer within the system; it may take
place on the same layer as other consideratioms though it makes parts of them to their
object (99: 726).
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Figure 1.22: Psi architecture, overview

Psi agents are based on something like a “sensk-#itit” cycle, but perception,
planning and action do not necessarily occur iittsguccession. Rather, they are
working as parallel processes and are stronglyreled. Of course, planning and
action selection rely on perception, and the exeoudf behaviors depends on the
result of planning and action selection.

All actions of the system happen due to motivatiem@ulses which are supplied
by the agent’s pre-defined dynamic demands. Theitagey not directly control
these demands, rather, they are specified by hgsiplogy” and perceived through
sensors. While some of the demands relate to teetagdependence on external
resources (energy and water) or its integrity, éhare also cognitive demands
(certainty and competence). The demand for affillais an example of a social urge,
which can only be fulfilled by other agents.

The satisfaction of a demand is reached by consuenpvents, for instance the
intake of water (which decreases the water demahd)exploration of an unknown
situation (which leads to more certainty) or thecassful completion of a plan
(which raises the competence level). Such an acksimpent is indicated by a
pleasure signal, a positive reinforcement signainv@rsely, aversive events are
defined by the raise of a demand. They are poiotedy a displeasure signal, which
provides negative reinforcement.

An insufficiently satisfied demand is signaled asuage by the demand sensors,
and might give rise to a motive. Motives are se&léaccording to the strength of the
urge and the estimated chance of realization tlie.agent will not choose a motive
for its actions that it expects not to have a cbasfcsatisfying).
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The active motive determines the choice of actimngriggering and controlling
the planning behaviors of the system: The motieegmtivates content in the agent’s
long-term memory. Most important is the identifioat of those situations and events
that have lead to the satisfaction of the motivateel demand in the past. These
consumptive events are chosen as goals, and ttersgdtempts to construct a plan
that leads from the current situation to the gdabsion.

External stimuli are interpreted according to hypeses, which bring them into a
relationship to each other and allow the conceatibn and recognition of complex
objects (using object schemas), situations andegses (using episodic schemas).
These hypotheses are built incrementally, storednid retrieved from long-term
memory. The active motive determines part of thetext by pre-selecting a set of
hypotheses which may increase the speed and relev@inrecognized objects and
situations.

Planning and action selection consist of a broadfseognitive behaviors, which
might even be evaluated, modified and stored im@mm memory for future use.
Eventually, they yield behavior programs that candxecuted with respect to the
environment.

Perceptions derived from the environment and thgorg that have been
performed on it become part of the agent’s situaiimage, a description of the
present situation. This situation image is the hefad protocol chain that holds the
agent's past. The strength of the links in the rmhd@épends on the motivational
relevance of the events in the current situatiohemever an appetitive goal is
fulfilled (i.e. a demand is satisfied), or an awegsvent ensues and leads to a sudden
rise of a demand, the links of the current situatio its immediate past are
strengthened, so that relevant situations becoswcided both to the demand and to
the sequence of events that lead to the fulfillnenthe demand. Over time, weak
links in long-term memory may deteriorate, anddigls” of related events appear.
These fragmentary sequences of motivationally esleevents can later be used for
planning.
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Figure 1.23: Psi architecture—the effect of exp@mis on certainty and competence

The hypotheses which are used in the recognitiagpafodic event sequences create
an expectation horizon against which actual eveatsbe matched. In the same way,
the hypotheses of objects which are used to rezeggomplex items and situations
take the form of expectations which can eitherdtesed or violated. And likewise,
the outcome of actions can match or violate theeetgiions which were part of the
plan that governs the current behavior of the ageim¢ agent strives to increase the
reliability of its expectations. There is actuadlyspecific demand related to this—the
reduction of uncertainty. Whenever an expected tefeglis to turn up, the anticipated
outcome of an action does not materialize, unknohjects appear or known objects
display unexpected aspects, the agent’s certanafysd A low certainty increases the
likelihood of choosing uncertainty reduction as active motive. Reduction of
uncertainty is achieved by exploration, which ledadsthe construction of more
complete or more accurate hypotheses, and it issumed by matches between
expectations and actual perceptions and actioromes.

Whenever the action control system of the agenosé® a leading motive, it has
to estimate its chances to satisfy the related ddmid strategies for the satisfaction
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of the demand have been discovered in the paste8pective protocols might be
used to estimate a probability of success (whiaalked ‘specific competence’ here).
This requires a known chain of events and actieadihg from the current situation
to the goal. If there is no such definite plan, élgent has to rely on other measure for
its decision—a general sense of competence. Thisnae, called ‘general
competence’, is provided by calculating a kindlo&fing average ovell successes
and failures of the agent. Competence, the effigieri the agent in reaching its goals
and fulfilling its demands, is a demand in itselitesesses increase the competence,
and failures decrease it. A high competence refladtigh coping ability—either the
environment is not very challenging, or the agentvell up to the challenge. The
urge for more competence can then only be fulfibgdactively seeking difficulties.
Vice versa, a low competence level suggests tieadgfent should abstain from taking
risks and asks for more stereotypical behavior @tiog to those strategies that have
worked in the past.

Together, competence and certainty direct the agergrds explorative behavior;
depending on its abilities and the difficulty of stering the environment, it will
actively seek novelty or avoid complexity.
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In a dynamic external and internal environment, tiognitive and physiological
processes of the system should adapt to the curegnts. This is achieved by a set of
modulators, the most central one beamgjivation Strong urges (which correspond to
a high, possibly vital demand) increase the adtimabf the agent, and a strong
activation corresponds to greater readiness fooraétt the cost of deliberation, and
to more energy expenditure at the cost of econdrig is often necessary to escape
a dangerous situation, to hunt down prey, to medeadline. Thus, the activation
modulator will influence perceptual and deliberatjyocessing, and it will affect the
action execution.

More immediate action, faster perception and shqof@nning are detrimental to
elaborated planning, extensive retrieval, thorowmgémory reorganization, careful
and fine-grained perception. These behaviors asretbre modulated by the
resolution leveparameter: A high resolution level results in ¢geaepth and width
of the schema structures used in perception, dalilbe, memory organization and
retrieval. Whereas more resolution captures motaildét comes at the cost of
overview and processing speed. Thus, the resolu&wal parameter is balanced
against the activation level; high activation mekwsresolution and vice versa.

Furthermore, the agent needs to adapt its readinesdlsange its motive, mainly
depending on the motive itself and its strengttis Thachieved by setting a dynamic
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selection thresholdwhich is added to the relative strength of therently active
motive. A low selection threshold leads to morexifile behavior, while a high
selection threshold makes it difficult to change #cttive motive and helps to avoid
oscillations between conflicting behavioral striagsg

The action regulation of Psi agents is the foumadetif all higher cognitive processes
(Detje 1996, p. 63) and the pre-requisite for kensions towards richer interaction,
language, more sophisticated deliberative procgsaimd communication between
agents.

1.12 Dorner’'s Psi agent implementation

Several implementations of Dorner's Psi agentstestmrting from earlier, partial
implementations of the emotional/motivational mo@&moRegul: Dérner, Hamm,
Hille 1996), the island simulation (“Psi Insel”) @ved, which makes use of
simplified hypothesis based perception (HyPercapt) planning mechanisms. This
version was later amended for different experimavith language (Kiinzel 2004),
comparisons with human subjects (02: 249-324, DOaBH3, Detje 1999, 2000,
Dérner and Starker 2004) and social simulation (@drLevi et al. 2001). Different
scenarios, like the ‘city world’ simulation and &mima Kinzel's “Kanal-Welt”
(sewer world introduced different object definitions. A forthming implementation
(Dorner, Gerdes 2005) which desists from using Hg®® focuses on social
interaction in a multi-agent system.

1.12.1 The Island simulation

Dérner's most complete implementation at the tinfewsiting is part of the
simulation “Psi Insel”, where an agent has to natégan island in pursuit of fuel,
water and bonus items (“nucleotides”), while presey its integrity4. Unlike the
EmoRegul algorithm, a Psi agent is an autonomatsted virtual creature instead
of an event processor; it needs to satisfy a sphgs$iological demands, and if it fails
doing that (i.e. the fuel, water or integrity levelches zero), it breaks down.

54 This section refers to Psi 4.9.1.320, version fd@nuary 29, 2004, available from Dietrich
Dorner.
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Figure 1.25: The “island” environment for Psi agent

The environment consists of a graph that can beettsad along its edges using
directional locomotion commands (“north”, “northsta “east”, “sourth-east” and so
on). Each vertex of the graph is presented as adtmensionakituation made up of
non-overlappingbjects.

Each object is a closed shape that is drawn eptfrem vertical, horizontal or
diagonal pixel arrangements. The agents possessorserfor these types of
arrangements and can move these sensors overjdw définitions to obtain a low-
level visual description of the objects, which iganized into line-segments, which
are then grouped into shapes. Colors are ignoregeetsbare only discernible by
their black outlines.
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Situation: Hazel Forest
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Figure 1.26: Situation graph and situation image

The agents interact with the environment througket of operators, which are
locomotive (movement between situations and fogusim an object within a
situation) or directed onto an object (eating, ping, sucking, blowing, hitting,
burning, sifting, shaking, planting and even kiginf the object is unsuited to the
type of action (like an attempt to burn a pile ahg), nothing will happen. If an
object is compatible to the action type, it mayuass a new state (for instance, a tree
that has been burned might turn into a pile of .ash)

Some actions will have an effect on the demandshefagent: devouring a
hazelnut reduces the demand for fuel, for instaand, sucking salt-water increases
the demand for integrity (because it damages thatag

Kissingis reserved for the reduction of the demand féiliafon via application
on other agents. (Because the introduction of othgents in the original
implementation gave rise to difficulties, teddy tseaere soon around to take the part
of the objects of affection).
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Objects are state machines, where each stateualizisd in a different manner.
The states can change on their own: plants may grovwither; fire may flare up
and die down. Most state transitions, however,aoight forth by actions of the
agent: for example, if the agent drinks from a wateddle, the puddle might turn

empty; if it burns a tree, the tree may turn intdwning tree, and then into a
smoldering stump.

e P—y

Figure 1.27: Objects in the island world may chaoger time. Actions of the agent,

such as burning a tree, may only work on certaitestof the objects, and will affect
the outcome of object state transitions.

Some plants even have a “growth cycle” from seepldot, so the agent may benefit
from revisiting a place with young plants at a llatiene to harvest. Some plants
regrow fruits after picking, unless the plant itd&ls been damaged by the agent.

s e — -y — —_—
- LA™
take take

Figure 1.28: Some objects may exhibit a “growthie};csuch as a hazelnut bush,
which may regrow after its fruits have been picked.

The success of an action depends on the corretechbthe object it is applied on,
and on the state of the object. For instance,dk pp a fruit, it might be necessary to
find a fruit-bearing tree first, and then shake it.

%

a tree first, before a fruit can be obtained.

Incompatible actions do not have an effect on geapbut sometimes, the outcome

of a meaningful action might not be immediatelyiblis. For instance, breaking a
rock may need multiple hits.
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hit hit hit
—_— —_— ——

Figure 1.30: Sometimes, to achieve a desired remulaction has to be repeated, such
as hitting a rock multiple times to open a passage.

Some objects have similar shapes: there are diffeceks and trees that look very
much alike, and when regarded with low resolutievel, they may seem identical to
the agent. Because some objects (for instancesyauoky conceal valuable gems
(“nucleotides”) inside, it pays off to identify the details that may be predictors for
whether they warrant further investigation. It aspible to treat every similar looking
object likewise, but it means that the agent hasptnd more energy.

sift sift
LT —— L7 —— oa

hit

@ hit @Q @

Figure 1.31: The outcome of actions may be diffefenobjects of similar appearance.
At a low resolution level, the Psi agent will mtsfitale differences that would predict
if it is going to find nucleotides in a pile of shor a piece of rock.

The agent implementation within the “Psi Insel” teafre consists of a Delphi
program that is being made available by Dérnersugr(see internet homepage of
the Psi project). Its core is a model of humanoactiegulation that can be directly
compared to the performance of humans which arenptite same problem solving
situation. In addition, it provides tools to illuste the agent’s performance, especially
in the form of graphs and as a two-dimensionalafaainimation that visualizes
emotional states based on the modulator configamatind pleasure/displeasure
situation of the agent (Gerdes and Dshemuchads&) 200

The island simulation exists in many versions, savité extended or restricted
operators, or even with customized object setsrdlie also a three-dimensional
version of the island, called “Psi 3D”, which usgatic, scalable bitmaps (so-called
“billboards”) to display the objects. The interfagéows for continuous movement in
all directions. As the objects in the 3D island Mamay transmit messages to their
neighboring objects, it is possible for flames pyesmd from tree to tree and for a
wooden log to make a stream passable. Also, objeats be carried around to be
applied in a different context, allowing for moréffidult problem solving. The
difficulties posed by perception of overlapping edif and continuous movement
have so far limited the 3D environment to experitaevith human subjects.
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Figure 1.32: Psi 3D

1.12.2 Psiagents

The following section will mainly describe the Emadril system, which implements
the action regulation and emotion model of the thedhe Psi agent of the “Psi
Insel” simulation extends EmoRegul by mechanismstf@ interaction with the
environment. Because its implementation is not naab and usually simplifies the
theory that we have explained so far, | will noegent a detailed analysis of the
program here, but rather a short overview that maga starting point for those
interested in perusing the source code. Since titeala mechanisms have been
explained in the previous sections, this introdarctis probably only of interest for
those that want to know more of the state of theméial implementations and does
not add much to the understanding of the theoeffits

The processes within EmoRegul are mainly the fabhgw(Schaub 1997, p. 114,
Schaub 1993, p. 89):
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T Percept (incl. HyPercept) R R
(delivers information about environment) | €2{_expectation horizon

Genint
(intiates motives according to demands)

Memint
(stores generated motives)

'

Selectint
(chooses an intention based on motives)

Actint
(currently selected intention)

Runlnt
(executes intention)

demand indicators/urges

protocol memory

Figure 1.33: The main processes in the EmoReguranog

1.12.3 Perception

The modulePerceptimplements the perceptual apparatus of EmoRegliltlag Psi
agent, both for external and for internal phenoménaaintains three data structures:
- the current situation image, which captures therew and internal environment

- a protocol of the situations so far (episodic megmor
- the expectation horizon, which consists of a extlaon of the current situation
in the future, based on actual plans and memosgp&bdic schemas.

The perception of external events makes uddydfercept which realizes a bottom-
up/top-down actualization and confirmation of p@tcal hypotheses. HyPercept is
part of the Percept module in the Psi agent, basdwt play a role in the older
EmoRegul.

The internal environment of the agent might be @eed by connecting the state
of all currently active components of the actiogulation processes to the protocol
memory, so that internal configurations can be nrézad and retrieved.

The HyPercept algorithm currently regards only istaictorial data. It takes
simple bitmaps as its input, segments them inttindis non-overlapping objects and
uses a “retinal sensor” which looks for diagonahorizontal arrangements of three
adjacent pixels. These arrangements are sortedineteegments and chains of these
line segments are annotated with their relativerdioates and combined into shapes
(see figure 1.32). These shapes are then treatethamatic description of objects. A
situation in the agent world may be characterizgd bertain arrangement of objects,
but because objects may change due to operatiotiseocfgent, the situations are
distinguished independently of their content (bbe tcontent is nevertheless
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associated to the situations to allow the agembhéonorize the location of objects in
the world).

The processing of object schemas relies on twopsabessesassimilationand
accommodation Accommodation matches existing representation$ piercepts,
starting with a single feature. This feature isduse determine the set of possible
hypotheses (all objects that contain the featuragn, the neighboring features are
sought based according to the hypotheses, untiatghimg object schema is found.
The modulatoresolution levekpeed up the matching procedure by determining how
many features of the object are being comparedréedfe hypothesis verification is
considered successful. Thus, if the resolutionlle/w, the agent might mistake an
object for another it shares features with. If anowdation fails, the assimilation
process generates a new object schema from thepteat input by exhaustively
tracing its features and combining the result limes and shapes.

1.12.4 Motive generation (Genint)

The Genlntprocess gives rise to what will become intentidres, it pre-selects and
constructs motives. First, all demands are evaludfea difference to the respective
target value can not be automatically regulated iarfteyond a certain threshold, a
motive is generated for the demand by calculativegy dtrength, retrieving a simple
plan (automatism) from protocol memory, if possjbéed storing it inintention
memory(MemIn). Memintis simply a list containing intention data strues (see
below).

The generation of an intention depends on a thtdshloich is proportional to the
sum of all target deviation of all already estdi®id motives. Thus, the stronger and
more numerous the active motives are, the morécdiffdoes it get to establish a
new one.

Intentions are deleted as soon as the relatedttdey@tion disappears. The time
it took to resolve the related goal is then meneatiro allow for future predictions
(previous recordings of the time it took to reabh same goal are averaged against
the most recent episode).

1.12.5 Intention selection

The Selectint process chooses the active intentidotint from the motives in
intention memory by evaluating the plans with resge their timing. By comparing
the available to the anticipated time frame (ile expected number of time-steps
until the agent perishes due to lack of water, caneg against the estimated time to
reach a water source), thegencyis determined. Examining the structure of the plan
itself (mainly by regarding its branching factorelgs an estimate of its success
probability. Together with the motive strength, tBelectint process obtains a
measure that allows picking an available motivee Belected motive receives a
“bonus”, which corresponds tosglection thresholdand which adds a hysteresis that
keeps the active intention more stable.
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Selectintalso checks whether it is feasible to pursue rttoae one motive at once
(for instance, to visit a water source en routeato energy source). If possible,
Selectintamalgamateshe motives by combining and storing the compatjdans.

The central data structure is timentionand is made up of:

- the competence estimat®® which is the expectancy of realizing the goal;
0<c<1

- the headway that has been made in the plan, dalbtagim 0 < factum< 1

- the importancamp of the related demand, which reflects the devatio the
target value. In the case of aversive goals, theoitance is set to a constant,
which reflects the agents desire to avoid negaitemtions

- the urgencyrg of the intention; O< urg, where 0 corresponds to no urgency at
all, andurg > 1 suggests that the goal is threatened

- the timetminusuntil the goal will probably be reached, in sintida step&8

- the class of the motivaoti

- the number of time steps since the intention becactieeacttime’

- the timet, that it will probably take to reach the goal

- the planning timeaplan, which specifies how many time steps have beentgpe
generate a plan associated to the motive

- the planning coverageoveragé® that specifies, which proportion of the distance
between the current situation and the goal sitnai® covered by the plan;
O<coverage<1

- the plan qualityquality®® that measures the degree of elaboration of the; plan
usually, if coverageis high, themuality is low (i.e. many avenues and possible
branches have not been explored) and vice versa.

1.12.6 Intention execution

The procesRunint attempts to reach a consumptive goal (the satisfaof the
active intention) by executing a plan that is rdbto it. In the simplest case, this plan
has been identified and stored IB3enint and it has been established as an
automatism, a previously encountered sequencetioinacand events that lead from
the current situation to the goal situation. If such goal-oriented behavior program
is known, Runint attempts to construct it by modifying an existinghavior or by
creating a chain of actions and events from scrdadugh a hill-climbing procedure.
It the creation of a plan is not successful, th#ufa is marked by decreasing
competence, which will likely trigger orientatiomch exploration behavior in the
future, and the motive is sent back iMemInt The agent then falls back into a trial-
and-error strategy, which begins with those objedieut which the agent has the
least information, and by moving into situationatthave not been well explored.

55“Komp”

56 «ap”

57 «ActTerZeit”

58 “AusmassPlanung”
59 “GuetePlan”
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1.12.6.1 Events and situations in EmoRegul and Isla  nd agents

The world model of EmoRegul reflects the motivaiibnrelevance of the
environment. The “world” of EmoRegul is based oneuent model, where each
time-step may bring a new event. Such events mengdise or decrease a demand,
they may be useful or hindering in reaching a deinamated goal-event, and they
may be predictors of other events, thus allowirgaftticipation.

In accordance to the environment, in every tim@;sé¢ most one event is stored
in the protocol. Later on, the stored sequencesvehts are used to anticipate future
sequences, for instance the reactions of the amvienat on actions of the agent. The
event types allow the prediction of appetitive @weérsive situations, the estimation
of the difficulty and success probability of plaarsd, by evaluating signaling events,
the adjustment of the system according to expdutede events.

In the Psi agent of the “Insel” simulation, the negentation of the environment is
more sophisticated, and it is no longer a completeription of the simulation world.
Here, the protocol consists of a list gifuations which only partially captures the
features and structures that are accessible tcadgleat, and which is by and by
extended into a directed graph. Situations are ected by pointers that represent
por-links. Each situation contains a list of spatialyangedobjects and the pointer
from situations to objects is equivalent tsublink. The sensory description of each
object is made up of a linked list (again, the pais are considered to per-links)
of line segments, and line segments are made (gubfinked) line elements. Line
elements are arrangements of either two horizomyad, vertical or two diagonal
pixels, against which the pictorial input of thergeptual algorithm is matched. Thus,
the environmental descriptions of the Psi agergsh&rarchical and can be used for
the bottom-up/top-down processing of a HyPercemorihm. However, for
simplicity, the hierarchies have a fixed height aticture, for instance, objects can
not be made up of sub-objects, situations can eoiytain objects and not sub-
situations. While this reduces the flexibility dietagent in modeling its environment,
it makes the algorithmic solutions faster and mstraightforward, for instance, in
order to check the protocol for a situation cortagra goal element, it is sufficient to
check thesublinked object list within each situation insteaflusing recursion for
matching and learning.

Because of the structure of the environment, thentsgneed some specific
operators that allow them to act on it:

- locomotion happens with respect to one of eight directionss Inot always
possible to move in each of the eight directiorssially, only a few are available.

By successfully applying a directional locomotigreaator, the agent moves into

a different situation. By learning the relationshigtween locomotion and

situation, the agent can build a simple mental rifdphas a goal that requires to

get into a certain situation, then it can attenaptedmember or even construct a

plan out of movement actions that lead it fromdherent situation to the desired

one.

- focusing consists of approaching an individual object, ¢bgr making it
accessible to detailed examination and manipulafoeusing an object is called
aggressionreceding from the objecggression
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- manipulationactuators consist of a set of possible operatbishnare applied to
the currently focused object: picking/eating, dig hitting, shaking, sifting,
kissing and so on yield success with some objgadyput not with all. The agent
learns over time, which operations are applicablhich object and might even
yield a useful result.

The basic building blocks of representations inRise agents areeurons which
are have a type of either sensor, motor, demaradeit| protocol, control or short
term storage. Each neuron is simply made up ofctimadion value and aaxon (an
array ofsynapses Axonsare of typepor, ret, sub, sur, pic, laff, satisfaction-related,
goal-related, demand-related or aversion-relatedallly, synapses consist of the
neuron they connect to, a weight and sometimesmgpdeal or spatial annotation.
Neurons, which are not usetiroughout the agents, are realized using pointer
structures. Thus, spreading activation can be sitedlby maintaining pointers that
trace these structures, but this is done sequigntsal parallel processing algorithms
(for instance merging two spreading activation fare not realized.

1.12.6.2 Modulators
EmoRegul is modulated by
- a generahctivation(“Arousal”), depending on the current demand gites:

activation= Iog(z Impt+ > Urgt 1) log( 20numberOfActiveMotives]) ™

(1.10)
and (by two thirds) on the activation of the predaycle,
- theSecuringRatéor “Abtastrate”,sampling ratg, which is calculated as

SecuringRate (1— epistemicCompete)}eG.SD Urg #mp r femexpectednes

(1.11)
with

fear= Imp(1+ (g.z(tw—currentCycIe— fearConstabn)ﬂ (112)

andunexpectednesiepends on the number of unexpected events inrtheops
interval. The probability of detecting an eventhie environment is calculated as

P= % epistemicCompetene® SecuringRate Active (1.13)

- theResolutionLevel

- the experience which is determined by an asymptotic functiore.(iinitially
growing steeply, then slower), depending on expileessuccess.

- thecompetencewhich is calculated using successes and failises below)

In the agents, the modulation follows similar piohes, but a different schema with
different entities. Here, we maintain
- the setting of theascending reticular activation systerARAS, which
corresponds to attention/physiological activatiomumans and is calculated as a

60 For a description of the link types, see secti@gn8lon basic relationships.
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product of the demand strengths (each weightedsbselative importance) and
the logarithm of the agent’s activatiofirpusa).

- theresolutionLevelwhich is inverse to thascending reticular activation

- the selectionThreshold which is proportional to theascending reticular
activation

1.12.6.3 Pleasure and displeasure

The actions of EmoRegul and Psi agents are coedrdlly appetence and aversion.
Appetitive goals are marked by associations betwdemand indicators and
situations that lead to a reduction of the respectiemand, and likewise, aversive
goals are marked by associations to demand-incrgasituations (like accidents,
‘poisoning’ or failures). Appetitive associationg atrengthened hyleasure signals
while aversive associations are increasedibyleasure signals

Pleasure and displeasure signals are proportioneh&anges of demands. Thus,
the demand changes are crucial for learning. Thpleimentation in EmoRegul
suggests an integration of pleasure and displedisurethe different sources:

The signals are callddJL (from German: “Lust/Unlust” for pleasure/displessu
and are a sum of three components: Pleasure/D&plkedrom expecationd (L ,),
from hope and feal.ULg), and from actual satisfaction or frustration o€ tagent’s
urges [LULg).

Pleasure/Displeasure from fulfilled or violated expctations is calculated
independently in each simulation step. For eacitipated event that takes place, for
each indicating event and for each successful mctibe LUL, component is
increased by a constant value, #aeerienceConstanfor failures an unexpected
events a similar constant is deducted.

During exploration, the increment bUL, is determined as

I, = Activation(1- SecuringRaje ResolutionLe¥@andonf } (1.14)

whereRandon(l) is a random value between 0 and 1.
For planning, we computeUL, as

., = experienceConstaftt- ResolutionLevel expere

[Gompetencfl— SecuringRy (1.15)

Pleasure/Displeasure from hope and fea(LULg) can be computed by summing
positive values for anticipated positive events amedjative values for anticipated
aversive events. Those events that are just poedicf positive and negative events
are reflected with pleasure/displeasure signalweds they receive half the value of
the events that they foretell.

Pleasure/Displeasure from failure and satisfactior(LULc) is calculated as a the
difference of the changes of demands. Positive gdmitowards the target value) are
weighted with gpleasureConstannegative changes (away from the target value) are
multiplied with adispleasureConstantf multiple changes occur at the same time,
their effects are summed up.
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The overall pleasure signal is just the sumlL = LUL, + LUL, + LUL. and is used
as a reinforcement signal for learning, and for die¢ermination of theompetence
parameter of the system.UUL is positive:

competenge= competence L(JI:HZD currentcgllal(aﬂ cde’rrm;_l)flk

(1.16)
wherek is a constant valuegompetengg is the value ofcompetencen the
previous cycle, andurrentCycleis the number of the current simulation step. Thus
the competencéncreases stronger in the early interactions efdysstem and is less
influenced at a later time. For negatikelL (displeasure) the influence on a high

accumulated level afompetencés stronger:

competenge= competence L(.ll:b«/ZD currentCﬁ)IéZ— cdmm@_l)flk
(1.17)

Obviously, these formulas provide ad hoc solutiolos describe functional
relationships of the theory; they have been adjusteprovide ‘plausible’ behavior,
and other solutions might fulfill their tasks asliwin the agents, the calculation has
been abbreviated, for instandear is only represented by a mechanism of avoiding
aversive situations during planning/execution. (ldwer, there is an explicit fear
estimate in the agents as well, which is given lgy product of the demands for
competence and certainty. This estimate does agtglole for decision making, but
is only used for displaying emotional states iraaimated face.)

1.12.7 The behavior cycle of the Psi agent

The behavior cycle of a Psi agent is more detditeth the one in EmoRegul, but
closely reflects the descriptions in (99), althoupk different areas of the agent
(perception, motivation and planning/action contare not executed in parallel, but
consecutively. This is not really a problem, beeatile simulation occurs step-by-
step and unlike in many other cognitive models,irtgnis not a crucial aspect in
comparing human and model behavior here.

Initially, the agent calls its perceptual routireesd updates its world model: the
current situation is generated (by the proceduRercept which makes use of
HyPercep) and stored as a spatial arrangement at the et @gfrotocol chain of the
agent’s long term memory (procedi@mtokoll).

The management of demands and motives happenbaassfo

- First, demands and demand satisfactions are codhpuggrocedure
NeedAndCompetenceror all motives, we check their activity, weightwith
the motive weight and the time they are active; cbenpetence level is then
decremented by a small proportional factor. (Theemteeds the agent has and
the longer they persist, the lower does the conmgetparameter drop.)
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- The currently active motiveActualMotiv is derived (proceduréviotivation).
There, we also calculatection tendencigeswhich are later used to determine
open decisions. The tendencies are calculated as:

actionTendengy,...,,= CertaintyDemaffd- competerereBnd  (1.18)

actionTendency,, = certaintyDemahd competerezaBnd (1.19)
actionTendenqy,...q= certaintyDemand competerezaBnd (1.20)
actionTendenGy, . eexporaion=  CEMaintyDemafd~  competereraBng
(1.21)
actionTendenqy,  repomion= CeMtaintyDemanfd-  competereraBng
(1.22)

- Motive strengths depend on an expectation by vatineiple, wherevalue is the
strength of a demand multiplied with the importantet demand, and
expectatioris an estimate of the competence to reach tohgéis demand:

motiveStrength= weigjt demag(d competence temisCompetencjf

(1.23)

- Here, competencas a parameter reflecting the general ability leé agent to
tackle its tasks, and epistemicCompetence relaiethe specific ability of
reaching the goal. The latter is calculated usiveglogarithm over the sum of the
strengths over all retrieved connections betweercthirent situation and the goal
situation.

- A list of goals GoalList is maintained (procedur&oalGen which uses the
strength of individual motives and tkelectionThresholtb determine the active
goal).

Next, the agent climbs through tHRasmussen laddeof action selection and
planning:

- The proceduré.ookAroundchecks if in the current situation, there are dbito
be done that lead to goals or intermediate goals,tbere are associations from
the situation to one of the goals (in other woifiere is an object that is a goal
for an active motive). If that is the case a tifftef start situation, action and goal
situation) is returned, and this action is perfadrimamediately.

- If there is no immediate action to be taken, thenagattempts to find an
automatism from the current situation to an actigeal (the procedure
Automatisntakes a list of goals, the current aspect of the&son and returns a
triplet). Searching for an automatism works by rafié to do forward and
backward searches. The depth of the search depentteresolutionLevelthe
higher the resolution level, the deeper the seancfact, for the depth, the value
of the modulatoresolutionLevels just multiplied by 10).

- If no such automatism is retrieved, an attempt a&lenat constructing a plan
(procedurePlanenUndTup If no current plan exists, the system combines
triplets to find a path from the current situatespect to an active goal, first by a
forward, then by a backward search, using a hitieing paradigm and a depth
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that is determined by thesolutionLevelhere, theresolutionLeveparameter is
multiplied by 20). If a plan is found, the corregging intention parameters are
updated and the planning instance is stored iptbecol.

- In case planning was not successful, the agentisastto diversive exploration
(procedure WhatCouldBeDorje Depending on the setting of the current
resolutionLevel the agent probabilistically decides for the cntise accessible
objects, if their current level of certainty (itee degree of knowledge about their
reaction to the agent’s operators) warrants furtixptoration. This exploration is
done in a trial-and-error fashion, where thoseoastiwhich are relevant to an
active goal are tested first. For instance, ifagent is in need of food, it is likely
to test the edibility of unknown objects beforeyttage subjected to less motive-
related actions like burning or shaking. After stey the exploration of an object,
theresolutionLevehlso determines (probabilistically) to what exténldas to be
examined before switching to a different objecsitmation.

- If nothing remains to be done, the agent switcloea testing state (procedure
Ruhg, until a new motive wins over.

Several supplementary procedures are called daitign selection and planning,
most notably:

- Association: The proceduresookAround Automatismand WhatCouldBeDone
all entail looking for associations using spreadagivation. The procedure
Associationchecks if one of the elements GoallListis part of the foreseeable
future, by checking forwards in the protocol fos ibccurence Association
simulates a fan-like spreading of activation in themory structures, not by
parallel processing but by recursion. Because th®opol may extend into many
branches, both width and depth of the search habe timited. To limit depth, a
slightly (randomly) decreased value is transmitie@ach recursive call (starting
at 1, with a random decrement between 0 and 0.1st@fs are performed on
average). The width of the search is bounded bygwting theresolutionLevel
parameter: the lower thesolutionLevelthe higher the probability of an element
(and its successors) to be ignored in the compasiso

- Confirmation After a behavior program (i.e. a sequence ofdtipfrom a start
situation to a goal situation) has been found piteeedureconfirmationchecks if
this plan is likely to fail. This is estimated bgcamulating arefutation weight
whenever it encounters branches (possible altematitcomes of actions) in the
sequence that lead away from the go@bnfirmation makes use of the
resolutionLevetoo: the lower theesolutionLevelthe higher the probability of a
branching element to be ignored.

The performance of the agent improves throlegitning andforgetting There are
two main fields of learning: on is the acquisitiohnew object representations and
protocol elements due to perception, and the oikeremployed whenever
something motivationally relevant happens (proceéReinforceRetrp
RelnforceRetro is called if a demand decreases (@eser to the target value)
or increases (deviates from the target value). Then links between the current
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situation and the preceding protocol elements angthened. Starting from the
present situation, each preceding link with a weigheceives an enforcement of

W, =( w,_, +max( 0,reinforcement 0.03))2 (1.24)

wherereinforcements the initial increase of the link strength, andetermines
the distance of the respective link from the presémation. In other words, if the
initial reinforcement is 1, the link to the previsituation is set t \/2W+1) , the
link between the previous situation to its predsoego (\/v—v+0.9 ) and so on,
and the strengthening will taper out after 33 links

The counterpart of this strengthening is forgettingeach cycle, synapses in
the protocol may decay according to

w, = \/ w_,° —Random(1JtyclesSinceLastChange forgetR (1.25)

where Random(l1) is a random number between 0 and 1,
cyclesSincelLastChangmecifies the last time the link strength was éased (so
freshly changed links receive little decay) dodjetRates a decay constant.

1.12.8 Emotional expression

The Psi agents have been extended by an animateddadisplay their modulator
configuration to the experimenter (02: 219-230)¢cdnsists of a two-dimensional
cartoon mask that changes its expression usingredesized Bezier curves. These
curves correspond to 14 facial muscles:
brow lowering, raising, inside movement
chin raiser
cheek puffer
jaw drop
lid tightener and upper lid raiser
lip corner depressor and puller
lower lip depressor
lip presser and stretcher
nose wrinkler
Additionally, the color of the face and the pupilation can change to reflect the
ascending reticular activation.
The expressions of the face are changed accorieigt dimensions:
- “pain” (reflects events thahcreasethe demand for integrity and the current lack
of integrity)
- activation (as represented in the unspecific syhipas$ activation)
- “surprise” (decreases okrtainty)
- “anger” (proportional to the lack of certainty acaimpetence, i.e. increases in the
face of failure; and proportional to the squar¢hef activation)
- “sadness” (is similar to anger but inversely demericn the activation)
- “joy” (reflects a reduction of the demand for congree, which takes place
whenever the agent reaches a goal or appetitivatiit, and the current demand
is satisfactied)
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- “fear” (is proportional to the lack of certainty dacompetence and the current
changes)
- “helplessness” (is activated by failed attempt8rid automatisms or plans)

Because “pain” and “surprise” are often active doe behavior cycle only, they are
“dragged out” for the display: In each simulatidgaps they fade by 20% (unless they
receive new activation). The levels of “pain”, “ptise”, “anger”, “joy”, “sadness”,

“fear” and “helplessness” are only derived for ¢hgp purposes; they do not
themselves affect the activity of the agent. Theyjast intermediate variables of the
emotional expression sub-system—the correspondingtienal states themselves,
from which these levels are calculated (and whictaffect the agent’s behavior) are

made up of multiple parameters.

X (ﬁ Face
Schmerz ﬂ J ﬂ 0.29 Datei Eigenschaften
Aktivierung | 4| ] | 020
Ueberraschun | 4 J ﬂ 0.25
Aerger 4_|_| ﬂ 0.0
Freude 4] ] | o4
Furcht Kl _ | ez
Traurigkeit | 4| | | 000
Hiflosigkeit | 4| | »| o8

Figure 1.34: Emotional expression by an animated fa

Thus, the emotion dimensions that are expresseallyslo not correspond to a single
cognitive parameter, they are ndiasic emotions Instead, they represent a
combination of modulators, cognitive events and aieas, which is mapped to a
muscular activation. By superimposing the activaithat correspond to the different
emotional dimensions and delaying the release efekpressions of pain, anger,
sadness, joy and fear, plausible facial expressianse achieved.
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2 The Psi Theory as a Model of Cognition

“The new concept of “machine” provided by artifitiatelligence is so
much more powerful than familiar concepts of medrarthat the old
metaphysical puzzle of how mind and body can pgdsébrelated is
largely resolved.”

Margaret Boden, 1977

When we are discussing the Psi theory, we are hgolt an attempt to describe the
nature of cognition, and of how a mind and its #pemformation processing work.

Cognition is not a strictly defined and conciselscemferenced subject. In fact,
different areas in the cognitive sciences tendrteustand it in quite different ways.
In computer science, for instance, the terms ‘dbgnisystems’ and specifically
‘cognitive robotics’ (Lespérance, Levesque et 8P4) often refer loosely to situated,
sometimes behavior based agent architectures, aheointegration of sensory
information with knowledge. In philosophy, cognitiausually relates tintentional
phenomena, which in functionalist terms are intetgnt as mental content and the
processes that are involved with its manipulafbn.

In psychology, cognition typically refers to a tém class of mental
phenomena—sometimes involving all mental processmagetimes limited to ‘higher
functions’ above the motivational and emotionalelevbut often including these.
Cognitive psychology acknowledges that the mindharacterized by internal states
and makes these an object of investigation, and teads to be somewhat in
opposition to behaviorist stances. Neuropsycholegyetimes focuses on cognitive
processing, and a substantial part of contempdZagnitive Science deals with the
examination of the biological processes and infdionaprocessing of the brain and
central nervous system. On the other hand, somehpkgists argue that the
neurobiological phenomena themselves take plagefanctional level different from
cognition (Mausfeld 2003), and that although cdgnitis facilitated by brain
processes and neurobiological correlates to meotajnitive) processes have been
identified, this relationship is spurious and sldonbt mislead research into focusing
on the wrong level of description. In this viewe tfelationship between cognition and
neurobiological processes might be similar to time ®etween a car-engine and
locomotion. Of course, a car’s locomotion is faatitd mainly by its engine, but the
understanding of the engine does not aid muchniirfig out where the car goes. To
understand the locomotion of the car, the integnatif its parts, the intentions of the

61 The position that intentional phenomena can beetstdod as mental representations and
operations performed upon them is by no means ghlayeall of contemporary and most
traditional philosophy; often it is upheld thatentionality may not possibly beaturalized
(which usually meanseduced to brain functionsHowever, the concept that intentional states
can be explained using a representational theorgiod is relatively widespread and in some
sense the foundation of most of Cognitive Science.
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driver and even the terrain might be more crudiahtthe exact mode of operation of
the engine. We will briefly revisit this discussi¢see section 2.1.1.1).

Traditionally, psychology tended to exclude emotmmd motivation from the
realm of cognition and even saw these in opposifitnis distinction is currently seen
as largely artificial, and a lot of research of gitige psychology is devoted to these
areas, as well as to higher level cognition (sefiitoring and evaluationmeta-
cognition). Yet, the distinction is often still reflected dhe terminological level,
when reference is made to ‘cognitive and motivaioprocesses’ in order to
distinguish for instance the propositional reasgrifiom action control.

Often it is argued that the cognitive processearnbrganism do not only span brain
and body, but also the environment—to understarghition is to understand the
interplay of all three. There are several reasamstlis: for one thing, because
cognition might be seen as a continuum from lovwelephysical skills to more
abstract mental faculties (van Gelder and Port 1p98iii-ix): Just as the motion of a
limb might not be properly understood without lowki at the nature of the
environment of the organism, cognitive processeweeheir semantics largely from
environmental interaction. Furthermore, the cogaitiprocesses are not entirely
housed within the substrate of the organism’s nesveystem, but partly literally in
the interaction context with its habitat. While sstimes relevant aspects of the
environment may be modeled within the organism ttie form of a neural
“simulator”), these representations will tend toibeomplete and just sufficient for
interaction, so parts of cognition will not work thout the proper environmental
functionality (Clark and Grush 1999). It has alseeb argued that the acquired
representationwithin the organism should be seen less as a part afftfamism than
of the environment to which it adapts (Simon 198153). And finally, an organism
might use tools which are specifically designedntigract with its cognitive core
functionality, thus a part of the environment migetome part of a mirfd.

As we see, it is difficult to put a fence aroundgeiion. Why is the notion of
cognition so immensely heterogenuous?—I believeithbecause the term intends to
capture the notion of mental activity, of what thend does and how it gets it done.
Because there is no narrow, concise understandiwhat constitutes mental acitivity
and what is part of mental processes, much les$ dsto be taken into regard to

62 See, for instance Clark (2002The sailor armed with hooey and alidade can achiteats

of navigation that would baffle the naked brain (.Ahd—perhaps more importantly for this
discussion—the way such tools work is by affordirg kinds of inner reasoning and outer
manipulation that fit our brains, bodies and evauogary heritage. Our visual acuity and
pattern-matching skills, for example, far outweighr @apacities to perform sequences of
complex arithmetical operations. The slide rule dstool which transforms the latter
(intractable) kind of task into a more homely orfevisual cognition. Tools can thus reduce
intractable kinds of problems to ones we alreadykhow to solve. A big question about tools,
of course, is how did they get here? If tools aieks for pressing increased functionality out of
biologically basic strategies, what kinds of min@s enake the tools that make new kinds of
minds?”
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understand them, cognition, the Cognitive Scieraed the related notions span a
wide and convoluted terrain.

The Psi theory of Dietrich Dorner is an attemptéwer most of this terrain in a
single effort. While it is unsuitable for reachiaglepth that would make the work of
any single discipline obsolete, it can help to Idok answers that depend on the
interrelations of different fields of Cognitive oices that it has strung together.

Dérner’s functional model, while routed in psychmjo strives to be a particular
kind of answer to the question of how the mind vgoi®uite obviously, Dorner’'s Psi
theory, even his approach itself, is very much kenlimost contemporary work in
mainstream psychology. This might not be a fault tké theory, rather, this
methodological discrepancy can best be understgdddiing at the recent history of

psychology.

2.1 Cognitive Architectures as Models of the Mind
“Every intelligent ghost must contain a machine.”
Aaron Sloman (2002)

Current psychology has its roots as a natural seiégmthe psychophysics of Fechner
and Helmholtz, and became an independent disciplihen Helmholtz' pupil
Wilhelm Wundt founded his experimental laboratotyttee University of Leipzig in
1874 (Boring 1929). Yet the understanding of psjai as an experimental science
has often been challenged, especially by the psywlgtic movement that was
primarily founded by Sigmund Freud in the 1890s &witbwed up (among many
others) by Sandor Ferenzci, Carl Jung, Melanie rKléMichael Balint, Donald
Winnicot, Heinz Hartmann, David Rapaport, Jacquasan, Slavoj Zizek, Charles
Brenner. Because of the speculative nature of tegchwanalytic assumptions,
psychology came under heavy fire from positivistd ampiricists already in the first
half of the twentieth century (Gellner 1985, Grimiral1984), Karl Popper argued
that psychoanalysis was flawed, because its statismeere not open to falsification.
In that light, the metaphysical aspects of psyctpplmelted away, the psychological
mainstream turned away from structuralism and tde/ghe study of the literally
physical, which meant at the time: of observableaver. Behaviorism, as proposed
by John B. Watson (1913) became very influentiagd an the form ofradical
behaviorism(Skinner 1938) not only neglected the nature ohtaleentities as on
object of inquiry, but denied their existence aftthger. At the same time, this
tendency to deny the notion of mental states aignsfic merit was supported by the
advent of ordinary language philosophy (Wittgenst&d53, see also Ryle 1949).
Obviously, the neglegience of internal states ef thind makes it difficult to form
conclusive theories of cognition, especially wigspect to imagination, language
(Chomsky 1959) and consciousness, so radical betievi eventually lost its
foothold. Yet,methodologicabehaviorism is still prevalent, and most conterappr
psychology deals with experiments of quantitativeture (Kuhl 2001). Unlike
physics, where previously unknown entities and raatdms involving these entities
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are routinely postulated whenever warranted bynied to explain empirical facts,

and then evidence is sought in favor of or agaihsse entities and mechanisms,
psychology shuns the introduction of experimentallygrounded, but technically

justified concepts. Thus, even cognitive psycholeggws reluctance when it comes
to building unified theories of mental processeshild/ Piaget's work (especially

Piaget 1954) might be one of the notable exceptioaisprove the rule, psychology as
a field has a preference for small, easily testabierotheories (Anderson 1993, p.
69).

Psychology tends to diverge along the lines ofiticvidual modeled fields into
areas like developmental psychology, motivationakychology, linguistic
development, personality theories and so on. Nat these disciplines would be
invalidated by their restricted approach! Indeedgcimof their credibility is evedue
to their focus to an area that allows a homogenousadelogy and thus the growth
and establishment of scientific routines, commesitnd rules of advancement. But
this strictness comes at a price: the individuelldg tend to diverge, not just in the
content that they capture, but also in the wayy fh@duce and compare results.
Thus, it not only becomes difficult to bridge therminological gaps and
methodological differences in order to gain an gré¢ive understanding of an
individual phenomenon—the results from differensaifdlines might completely
resist attempts at translation beyond a shallowsaiperficial level.

It is not surprising that influences which leadth® study of genuinely mental
entities and structures within psychology came fudifferent fields of science: from
information sciences and cybernetics, and from &rlmguistics. They fostered an
understanding that mental activity amounts to imation processing, and that
information processing can be modeled as a comfilextion—an algorithm—
working over states which encode representatiansny view, the most important
contribution of the information sciences to psydgyl was the extension of
philosophical constructivism into functionalism amide resulting methodological
implications.

Functionalist constructivismis based on the epistemological position of
philosophical constructivism (see, for instancen Jeoerster and von Glasersfeld
1999) that all our knowledge about the world isdsh®n what is given at our
systemic interface. At this interface, we do noteiee a description of an
environment, but features, certain patterns ovelclwhwe construct possible
orderings. These orderings are functional relatigpgss systems of categories, feature
spaces, objects, states, state transitions etcddVeot reallyrecognizethe given
objects of our environment, ve®nstructthem over the regularities in the information
that presents itself at the systemic interfaceunfamgnitive system.

For example: if we take a glance out of the windowa cloudless day, we do not
really perceivethe sun, rather, we identify something we take asrtin luminance
and gestalt in what we take to be a certain dectielatively to what we take to be a
point in time. A certain direction is understood asmething we take as a
characteristic body alignment to something we takea certain place and which
makes a certain set of information accessiblewleatake to be a certain field of view.
In such a way, we may decompose all our notiorstim functional features that are
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the foundation of their construction. Thus, all ootions are just attempts at ordering
patterns: we take sets of features, classify theoording to mechanisms that are
innate within our interpretational system and eeldtem to each other. This is how
we construct our reality.

To perceive means on one hand to find order oveens; these orderings are
what we callobjects On the other hand, it amounts to the identifaratof these
objects by their related patterns—this is intuitjvdescribed as the recognition of an
object by its features, just as if we would obseihwe objects themselves instead of
constructing them.

An opponent of this view (arguing, for instancepnfr an essentialist or realist
perspective) might suggest that we intuitively divédn access to physical objects in
the world; but this argument may be tackled usingimaple thought experiment: if
someone would remove one of the objects of ourdvand just continue to send the
related patterns to our systemic interface (fotainse, to our retina) that correspond
to the continued existence of the object and terattion to what we conceptualize as
other physical objects, we would still infer themsa properties, and no difference
could be evident. If, for instance, all electronstihe world would be replaced by
entities that behave in just the same way, baievieuld continue to supply electrical
energy, atoms would not collapse and so on: ncemiffce could ever become
evident®3 Now imagine the removal of the complete environmémstead, we (the
observers) are directly connected (for instanceulrysensory nerves) to an intricate
pattern generator that is capable of producingsdme inputs (i.e. the same patterns
and regularities) as the environment before—we dosiill conceptualize und
recognize the same objects, the same world as evéndihe hypothetical world of
‘real’ objects. There can be no difference, becawssything that is given is the set
of regularities (re-occurrence and seeming depariegetween the patterrfs).

The same restriction applies, of course, to thetatigghenomena of the observer.
The observer does not have an exclusive, intimatess to the objects of its
cognition and representation which would enabl® itvitness ‘real’ mental states.
What we know about ourselves, including our firstgon-perspective, we do not
know because we have it available on ‘our sidénefihterface’. Everything we know

63 A similar example is supplied by Hilary Putnam 753 Individuals in a hypothetical twin-
world to earth on which all water has been replabgda chemical compound XYZ with
identical properties would arrive at the same ols@ns and conceptualizations. Thus, the
content of a concept that is encoded in a merda#e sefers to the functional role of the codified
object.

64 This should be immediately clear to anyone whfaisiliar with controlling a robot: for the
control program of the robot, the environment pilksent itself as vectors of data, attributable
to sensory modalities by the different input chdsn€or all practical purposes, the world
beyond the sensors is a pattern generator, nothorg, nothing less. The patterns will show
regularities (some of these regularities may evemterpretable as feedback to motor actions),
but the identification of structure and objectairthese patterns happens due to the activity of
the robot control program, not because of the fipscdf the pattern origin. If the world is
replaced by an artificial pattern generator (a $at@d environment), so that the input data
show the same statistical properties with respethé interpretation, the control program can
not know of any difference.
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about ourselves is a similar ordering we found deatures available at the interface,
we know of mental phenoma only insofar as theyexydicitly accessible patterns or

constructed over these patterns. Even though aymittee processes are responsible
for the functionality of ordering/conceptualizatiand recognition, they are—insofar

as they are objects of our examination—"out thened only available as regularities

over patterns (over those patterns that we takdetoaspects of the cognitive

processes).

From such a point of view, the Cartesian “cogitgoesum” is a quite problematic
statement. “Cogito” is just the expression of tledidf of being in a certain state—and
necessarily on the basis of certain perceived feattAnd naturally, these features
may have been caused by something different thacognitive process. The
presupposition of a cognitive process is alreadyinéerpretation of procedurality,
past, distribution and structure of these featuhese want to discover something
about our minds, we will have to go beyond our €sdn intuition and ask: what
properties make up our respective concepts? Whikieiselationship between these
concepts?

What the universe makes visible to science (andodsgrver), is what we might
call functionality. Functionality, with respect to an object, is—lelysput—the set of
causally relevant properties of its feature veBtdfeatures reduce to information, to
discernible differences, and the notions we progessir perception and imagination
are systematically structurednformation, making up a dynamical system. The
description of such systems is the domaimtydferneticsor systems scienag@Viener
1948, Ashby 1956, von Bertalanffy 1968, Bischof 898ateson 1972, Klir 1992).
Systems science is a description of the constrictivethods that allow the
representation of functionality.

Thus, in order to understand our concept of ming,have to ask how a system
capable of constructing has to be constructed, wbatures and interrelations
determine the relevant functionality. The idea ekdatibing the mind itself as a
functional systef®f has had an enormous impact on a certain areayashgsgy and
philosophy, which has consequently been associaidd the termfunctionalism
(Fodor 1987; Putnam 1975, 1988). If a functionadigbscribes to representationalism
(the view that the functional prevalence of a mestate entails its representation
within a representing system) a functionalist moofetognitive processes might be
implemented as a computer progracorfiputationalisinand perhaps even verified

85 To be more accurate, the notioncalusalityshould be treated with more care, since it is an
attribution, not an intrinsic property of the feats. Because causality is an attributed structural
propery, functionality itself is constructed, evlough the regularities classified as causality
are not.

66 According to David K. Lewis (1972), mental stateake up certain ‘higher order states’,
which can be defined using existential quantifimatiover ‘first order’ physical states. The
mental state expressions in a the®rpf causal roles of mental states can then be septed

by ‘higher order’ variableX;...X, ranging over a domain of physical states. To jpaeeithek"
mental state expression to an individoale can noteld X;... X, (¥(Xy...X,) OX(c))). Thus, a
physical statey(c) realizes the mental state corresponding tdthexpression in¥ iff gy is in

a set of physical states... ¢, that together satisty(X;...X).
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this way, so functionalism often goes hand in haith computer science’s proposal

of Artificial Intelligence®” Even if mental processes could not be modeled as a
computational model—any detailed, fornthéory on how the mind works certainly
can (Johnson-Laird 1988, p. 9).

The idea of a full-featured model of the cruciampmnents of human cognition
was advanced by Alan Newell and Herbert Simon asrsequence of thghysical
symbol system hypothegidewell and Simon 1976). According to this hypaike a
physical symbol system, i.e. an implementeding machine“has the necessary and
sufficient means for general intelligent action. Byecessary’ we mean that any
system that exhibits general intelligence will prowpon analysis to be a physical
symbol system. By ‘sufficient’ we mean that any giogl symbol system of sufficient
size can be organized further to exhibit genetalligence.” (Newell 1987, p. 4%

A system capable of fulfilling the breadth of cagre tasks required fogeneral
intelligence is a model of aunified theory of cognition(Newell 1987), an
implementation of a so-callembgnitive architecture

The development of cognitive architectures folloavddifferent paradigm than
strict experimental psychology: instead of posingraividual question, designing an
experiment to find evidence for or against a pdssimwer and performing a study
with a group of subjects, the cognitive modelersdstw a certain set of cognitive
feats (for instance, in problem solving) could hEsgibly achieved and suggests a
solution. This solution integrates previous reseaand might be even detailed
enough to make specific predictions on task peréore or neural correlates, which
allow experimental falsification, either by behadbstudies or by neurobiological
examiniations (for instance brain imaging). Becatlgeentities that are proposed in a
cognitive architecture are usually not all empiicaccessible, they have, to put it
loosely, to be engineered into the system: theditgliof the model depends on
whether it works, in accordance to available eroplrdata, and whether it is sparse,
compared to other available models explaining #mesdata.

This approach to understanding cognition equals atieption of what Aaron
Sloman has called theonstructionist stancgSloman 2000), and bears a slight
similarity to Daniel Dennett’s suggestion of thesign stance“knowing how to
design something like X is a requirement for un@eding how X work$,(Sloman
and Chrisley 2005).

67 Even though computationalism usually entails fiomztlism and representationalism, some
philosophers maintain that it is possible to beomputationalist without being a functionalist
(Block 1995).

68 |5 the physical symbol systems hypothesis equivate “Iron ore is necessary and sufficient
for building a locomotive?” On the surface, it geesy beyond that, because not every system
built by intricately arranging iron molecules cam bxtended to pull a train. The physical
symbol system hypothesis really refers to a fumetipnot a material relationship; a better
metaphor might be that a steam engine has the smgeand sufficient means to drive a
(steam) locomotive; that a steam engine will bentbat the core of every steam locomotive,
and that every conveniently sized steam enginedcbelsuitably extended. Lets bear in mind,
though, that the notion of computation is far mgeaeral than the principles of a steam engine.
Colloqually speaking, it does not engender much ritaasystematic regularity.
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In principle, a system might be described by idgimg its physical makeup—this
is what Dennett would term the ‘physical stanceitiMfespect to the mind, such a
description might entail a complete depiction o&ibrprocesses, which is usually
regarded as unwieldy, perhaps even infeasible, protably alludes to the wrong
level of functionality, just as a thermodynamicalsdription of air molecules might
not be helpful to a meteorologist when forecastimmorrow's weather. A different
view is lent by the ‘design stance’, which examitles components making up an
artifact, such as buttons, levers, insulators amdrs. Such components might be
replaced by other components which serve the sampoge. In a way, this
engineering viewpoint is a teleological one, anahight also be applied to biological
organisms with respect to organs and the rolesplaywithin the organism. Dennett
adds the ‘intentional stance’, which is the degwmip of a system in terms of
attributed intentional states, such as beliefstudets, desires and so on (Dennett
1971). The intentional stance allows predictionsutltthe behavior of the system, but
is by no means a complete systematical descriptiecause it does not explain how
the intentional properties are realized. (Dennétisklf does not maintain that the
intentional description is always a functional dggon. Rather, it is an attribution,
used by an external observer to characterize tters§®) Of course, the descriptions
of a thing as either physical, designed or intargticare not mutually exclusive—it
can be all these things at the same time, andtédmees just marks a different way of
looking at it. The physical properties of the systeealize the properties of the
abstract components that are part of its desigd,tha intentional properties of the
system are eventually realized by the physical @rigs as well. To find a design
description, a structural arrangement of componéhét realizes the intentional
system of a mind might not be a bad descriptiomvioat the creator of a cognitive
architecture is up to.

The goal of building cognitive architectures is @ohieve an understanding of
mental processes by constructing testable infoormafirocessing models. Every
implementation that does not work, i.e. that doafslime up to the specifications that
it is meant to fulfill, points out gaps in understigng. The integration of regularities
obtained in experimental psychology into the agthiire is not just a re-formulation
of what is already known but requires an additiooainmitment to a way this
regularity is realized, and thus a more refineddtlgpsis, which in turn makes further
predictions that can be taken into the lab of ttieeimental psychologist.

The difference to behaviorism is quite obvious. \&the cognitive modeling of
functionalist psychology is reluctant to proposed asupport entities that are not
necessary to achieve a certain observable beh@rnmuding everything that can be
observed using behavioral and neuroscientific mathofunctionalist psychology is

69 The intentional stance jEermissive—for instance, a system has a belief in case hs\ier
can be predicted by treating it as a believer. Thisximally permissive understanding”
(Dennett 1998, p. 331) makes no specific claimuabmer structure or organization. Rather,
Dennett suggests that the properties of a cogniigsgem are brought forth by a broad
collection of “mind tools” which individually needot bear relationships to the outwardly
interpretable functionality.
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essentially compatible with the ideas of scientifiositivism, because it makes
empirically falsifyable predictions of two kinds:

- The proposed model is capable of producing aispéehavior (or test subjects
will show a previously unknown property of behaviwedicted by the model).

- The model is the sparsest, simplest one that sttbes specific behavior with
respect to available observations.

If the predictions of the model are invalidateddiyservations or a more concise
model is found, the original model will have to tevised or abandoned. Because
cognitive architectures have many free variabless ioften possible to revise an
obsolete model to fit conflicting data, so the noekblogical implications and
criticisms arising are by no means trivial. As &ule cognitive architectures as
theories do not behave as proposed by classicabpemts of positivist methodology:
they are often less predictive than integrativewble1973). But then, large scientific
theories rarely do. Just as the extensive theatdimdies of physics, chemistry and so
on, the unified theories of cognition are not isethstatements that are discarded
when one of their predictions is being refuted.nRatthey ar@aradigms viewpoints
that direct a research program, and their adoptiorabandonment depends on
whether they can be characterized as what Imre thakiaas called apftogressive
research paradigm” (Lakatos 1965), that is, if $hdts in their assumptions lead to
more predictions that are substantiated with evideénstead of necessitating further
repairs’®

The functionalist view on mental phenomena is by means undisputed in
philosophy (Block 1978, Putnam 1988). Attacks cofrem many directions.

Especially famous is the position of John Searlép vattacks functionalism by
claiming that mental processes, especially consciess, would be a “causally
emergent property” of the physical organism andmsteom certain properties
providedonly by biological neurons (Searle 1992, p. 112). Ther&earle ascribes
properties to biological neurons that go beyondirthetherwise identifiable

functionality, i.e. an artificial replacement forreuron that would show the same
reactions to neurochemicals and the same interactioth other neurons would not
be capable of a contribtion to consciousness, #nd, this argument marks an
essentialist position (Laurence and Margolis 1998} is already incompatible with

70 These requirements are not reflected by all cognisirchitectures, however. For instance,
while Alan Newell claimed for his SOAR architectuhat it was Lakatosian in nature (Newell
1990), he also statedThere is no essential Soar, such that if it changesio longer have the
Soar theory. [...] The theory consists of whateverceptual elements [...] it has at a given
historical moment. It must evolve to be a succésiséory at each moment, eliminating some
components and tacking on others. [...] As long ahéacremental change produces a viable
[...] theory from the existing Soar theory, it willllsand always be Sodr (Newell 1992). |

will not embark on this aspect of methodologicalcdission, the interested reader may consult
(Cooper et al. 1996) for an introduction into thebate of methodological criticisms of
cognitive architectures.
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functionalism on epistemological grounddf an entity has to have a property that is
not empirical itself (and beinigiological is not an empirical property per se) in order
to contribute to some functionality, then this gnfis conceptually inadequate to
capture empirical phenomena in the eyes of a fonatist. Daniel Dennett, in an
introduction to Gilbert Ryle’s classic “Ghost inethmachine” (Dennett 2002),
introduces the idea of a “zombank” to illustratestth zombankwould be something
that looks and acts like a financial institutiorhexe people could have an account,
store and withdraw money and so on, but which isat@al bank because it lacks
some invisible essence beneath its interface anctiinality which makes a bank a
bank. Just as the notion of a zombank strikes sgrdlafter all, a bank is commonly
and without loss of generalitgefined by its interface and functionality), Dennett
suggests that the idea of a philosophical “zomtaedpgnitive system that just acts as
if it had a mind, including the ability for discaa, creative problem solving,
emotional expression and so on, but lacks sometsessence, is absurd.

Physicalism (or materialism, the philosophical idiet everything is either
material or supervenes on the material) is oftao@ated with functionalism—there
is not much controversy between functionalists amaterialists, functionalists are
usually proponents of physicalism (Maslin 20011§4; Kim 19982

If we choose to depict the mind as a dynamicalesystf functional dependencies,
we are not necessarily at an agreement of whatotdefrand how to do it. There are
many possible positions that might be taken withard to the level of modeling, the
entities on that level, and of course to the qoesithat makes up a mind. However,
the path of designing, implementing and experinbntdesting cognitive
architectures seems to be the only productive veagxtend philosophy of mind
beyond its given bi-millennial heritage, which ctvag;s each theory to the mental
capability of an individual thinker. The knowledgambodied in the materials,
structure and assembly of almost any complex im@distrtifact like a car, a notebook
computer or a skyscraper goes way beyond of whamndividual designer, material
scientist, planner or construction worker may coreef or learn in their lifetime, but
is the result of many interlocking and testable-théories within sub-domains and on
different levels of abstraction, and the same agpio the large theoretical bodies in
physics, biology, computer programming and so agt.ii the field of the philosophy
of mind, theories are typically associated with aodstrained to individual thinkers.

71 See Preston and Bishop (2002); a point that desgranicular recognition may be Searle’s
claim that semantics is something which is not cdale to syntax, and that symbol processing
systems can only ever know syntax, while intentibne about semantics (Searle 1980)..

72 Functionalism does not have materialism as a streggirement, at least not in the sense
that states the nessecity of matter agsaextensan the Cartesian sense (Block 1980). For
functionalism to work it is sufficient to have amputational system, and assumptions about
the nature of this system beyond its capabilitiéh wespect to computationability are entirely
superfluous and speculative. There is also a fanatist emergentist proposal that attempts to
construct a non-physical functionalism (Koons 20@3) the other hand, there is a position,
usually calledtype physicalismthat opposes functionalism and instead mainttias mental
states are identical to physical states (Fodor 1B@gineau 1996).
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If understanding the mind is not much simpler thiagn design of the plumbing of a
skyscraper, then there may be reason to believeatiyatheory of mental functioning
that fits into a single philosopher’s mind and é&ided and tested solely by her or his
observations and thought-experiments is going togtavely inadequate. Pouring
theories of mental functioning into formal modetgldesting these by implementing
them may soon become a prerequisite to keep pipigsof mind relevant in an age
of collaborative and distributed expertise.

On the other hand, cognitive modeling is lackingrapches that are broad
enough to supply a foundation for theoretical bsdiéa philosophy of mind. Broad
and not too shallow theories of cognition will berequirement for substantial
progress in understanding the mind.

2.1.1  Some philosophical assumptions of cognitive m odels

There have been several attempts to classify madatsgnition (Logan 1998, Pew
and Mavor 1998, Elkind et al. 1989; Morrison 20B&ter et al. 2002). Architectures
that attempt to model mental faculties form severathodological groups.

They might be divided into

- Classical (symbolic) architectures, which are essky rule-based. These
sprang up after Newell's call for a revival of uad theories in psychology
(Newell 1973, 1987). Classical architectures cotregé® on symbolic
reasoning, bear influences of a relatively strigciguage of thought concept,
as suggested by Fodor, and are often implementegr@duction based
language interpreters. Gradually, these architestimave been modified to
allow for concept retrieval by spreading activatitre formation of networks
from the initial rules and have occassionally elkean implemented based on
neural elements.

- Parallel distributed processing (subsymbolic) aedtures. This term was
introduced by John McClelland (Rumelhart, McCletlaat al. 1986); here, it
is used to refer to non-symbolic distributed cormau{usually based on some
or several types of recurrent neural networks). Whatassical architectures
strive to attain the necessary complexity by cadlefadding computational
mechanisms, PDP systems are inspired by biologieatal systems. Their
contemporary forms essentially work by constrainegchaotical system
enough to elicit orderly behavior. While PDP arebitires do not necessarily
differ in computational power from classical areletures, it is difficult to
train them to perform symbolic calculations, whisbem to be crucial for
language and planning. On the other hand, they $edia a very productive
paradigm to model motor control and many percepitatesses.

- Hybrid architectures may use different layers fidfedent tasks: a reasoning
layer which performs rule-based calculations, amlistributed layer to learn
and execute sensory-motor operations. Hybrid a¥chites are usually
heterogenous (i.e. they consist of different armbinpatible representational
and computational paradigms which communicate wébh other through a
dedicated interface), or they could be homogenasing a single mode of
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representation for different tasks). The latterugroepresents a convergence
of classical and PDP architectures.

- Biologically inspired architectures, which try toirettly mimic neural
hardware—either for a complete (simple) organisma® a layer within a
hybrid approach.

This distinction does not take care of how motwatand emotion are introduced into
the system. In fact, usually they are of no conderthe core models, because they
are seen as separate entities. Exceptions to theewist, of course, for instance
Clarion (Sun 2003, 2005), PurrPuss (Andreae 1988)R20rner’s Psi theory, which
all treat emotion and motivation as integral aspetthe cognitive system. For many
other cognitive architectures, separate additiodist,ewhich provide an emotional or
motivational module that interfaces with the coiyeitsystem (Belavkin, Ritter and
Elliman 1999; Franceschini, McBride and Sheldon120Bratch and Marsella 2001,
Jones 1998, Rosenbloom 1998).

In the following sections, we will briefly examirdifferent architectural approaches
and also mention some approaches from Artificiaélligence (Al). Al as a field
arguably does not seem much concerned with fullblomodels of cognition
(Anderson 1983, p. 43), and most Al architecturesndt attempt to model human
performance, but strive to solve engineering proislein robotics, multi-agent
systems or human computer interaction. On the otkend, contemporary Al
architectures tend to start out from an agent nmaigpbuilding an autonomous
system that acts on its own behalf and is situaiegih environment, whereas low-
level architectures in psychology usually deal vidblated or connected modules for
problem solving, memory, perception and action, lasve out motivation and
personality. There are psychological theories ofivation and personality, of course
(Kuhl 2001; Lorenz 1965, 1978), but they rarelyitvithe lowly realms of
computational models. There is no strict boundagywken Al architectures and
cognitive architectures in psychology, however, amost of the latter are based on
representational mechanisms, description languagesjory models and interfaces
that have been developed within Al.

2.1.1.1 The Language of Thought Hypothesis
Most research in the field of cognitive architeegufocuses on symbolic models of
cognition, as opposed to subsymbolic, distributpgreaches. Classical, symbolic
architectures are systems that represent and matg@ppropositional knowledge. If
there are things to be represented and manipulateidh are not considered
propositional knowledge, they are nonetheless ssmted in the form of
propositional rules (productions). Let us make ph#@osophical commitment behind
this approach more explicit: symbolic architectusgs proponents of a symbolic
Language Of Thought (LOT).

TheLanguage Of Thought Hypothe¢iOTH) is usually attributed to Jerry Fodor
(1975), and it strives to explain how a materidéhghcan have semantic properties,
and how a material thing could be rational (in #ense of: how can the state
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transitions of a physical system preserve semamtperties). (A summary is given
by Aydede, 1998.)

Fodor gives the following answers:

- Thought and thinking take place in a mental languaghus, thought

processes are symbolic, and thinking is syntagtith®l manipulation.

- Thoughts are represented using a combinatoriabzyartd semantics.

- The operations on these representations depenghtactic properties.

LOTH is not concerned with questions like “how abualnything material have
conscious states?”, “what defines phenomenal espes?”, “how may qualia be
naturalized?”

LOTH did not exactly state something new in 1974 shus did not open up a
completely new research paradigm in Cognitive SmerRather, it spelled out the
assumptions behind Artificial Intelligence modelsda cybernetic models in
psychology, it explicated what researchers wheiaglalready: if perception is the
fixation of beliefs, the learning of concepts amiuto forming and confirming
hypotheses, and decision making depends on repiegeand evaluating the
consequences of actions depending on a set ofrenefes. If all these aspects of
cognition can be seen as computations over caggiesentations, then there must be
language over which these computations are defireethrguage of thought. Fodor
was also not the first to express this idea (see,irfstance, Ryle 1949), but he
narrowed it down to an argument that sparked a tdebhout the nature of the
language of thought, a debate that is far from .over

To generalize the notion of thought and thinkinghia context of LOTH, we are
talking about “propositional attitudes”. A propadaital attitudeA is the relationship
that some subje@ bears to some propositithabout which can be said tHathinks,
desires, anticipates, etihat P. In other wordsS As that P (with A being an attitude
verb). LOTH makes three main assumptions:

First, the representational theory of mind (Fie@¥8, p. 37, Fodor 1987, p. 17),
which consists of two claims—the representatiohabty of thought (i.e. thoughts are
mental representations), and the representatibaaty of thinking (the processes that
operate on the thoughts are causal sequencestaiftiasions, otokenings of mental
representations). A mental representation is défgimply as somé&P#about which
can be said that whenever a subj8cts that P, there is a dedicated psychological
relationR, so that a subjec® bearsR to #P# and,#P# meansthat P. The mental
processes (thinking) are a set of operations dve=et representations.

Second, LOTH asks that these representations resideehow in the subject’s
physical makeup. This amounts to functionalist maliem (i.e. mental
representations are realized by physical propedfie¢se subject, or, colloquially put,
mental representations are somehow and only sioréte physical structures of the
brain and body).—This does not necessarily impat #il propositional attitudes need
to be represented explicitly (Dennett 1981, p. 10¥)is sufficienct if they are
functionally realized. On the other hand, not alplecit representations within a
cognitive system need to be propositional attitu@iesause not all of them are in a
proper psychological relation to the subject; seedf 1987, p. 23-26).
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The next assumption of LOTH is, at least as faCagnitive Science is concerned,
the most controversial one:

Mental representations have @ombinatorial syntax and semanticsvith
structurally simple, atomic constituents making sipucturally complex, molecular
representations in a systematic way, whereby thmastdcs of the complex
representations is a function of the semanticshef atomic constituents and their
formal structure. This claim about represented alectintent is complemented by a
claim about operations over this content: the dpEra on mental representations are
causally sensitive to the formal structure defifgdthe combinatorial syntax; the
semantics follow formal, combinatorial symbol maurigiion.

According to LOTH, a thinking system is characteddy representational states (the
“thoughts”) and semantically preserving transitiobstween them (the “thought
processes”), which can be described as a formgukege with combinatorial syntax,
i.e. a computational engine.

This immediately raises the question: How dg€# come to mearhat P? In other
words: how does the representational structureldd@ acquire its meaning? This is
commonly called theymbol grounding problerfHarnad 1987, 1990; Newton 1996).
LOTH proponents respond in two ways: either, tlwerat symbols can somehow be
assumed to have a meaning, and the molecular sgriy@rit theirs by a Tarski-style
definition of truth conditions according to the setic operations that make them up
of atomic component? (Field 1972, Tarski 1956), or the semantics afisen the
constraints that are imposed by the computatiool@srthe individual components
assume in the syntactic structdfeéFor a critical discussion, see Haugeland 1981 and
Putnam 1988.)

How does Fodor back up the strong claim that mejatesentations are following
the rules of a formal language with combinatoriaitax?—Obviously, a system may
represent and compute things without obeying thguirement of combinatorial
syntax, i.e. non-symbolic, or with limited strua@licomplexity. Fodor (1987, see also
Fodor and Pylyshyn 1988) points out, that
1. Thinking isproductive While one can only have a finite number of thasgh
in their lifetime (limited performance), the numbefr possible thoughts is
virtually infinite (unbounded competence). This cde achieved by
systematically arranging atomic constituents, egflgcin a recursive
fashion.

73 This is what the Psi theory does: here, concegspartonomically defined over atomic
concepts, which directly refer to sensors and aotaand thus to an interaction context in the
system’s environment.

74 If a cognitive system is temporarily or permangntlisconnected from its external
environment, does its mental content stop to beningéul? If not, then the semantics will have
to reside entirely within the conceptual structure, are determined by the constraints that
individual representational components impose eatth other via their syntactic relationships.
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2. Thoughts aresystematicand compositional Thoughts come in clusters, and
they are usually not entertained and understoddalation, but because of
other thoughts they are based on and related toudftis are usually not
atomic, but are syntactically made up of other elets—in a systematic
way. Systematically related thoughts are semaiicalated, too.

3. Thinking itself is systematic (argument fromferential coherence For
instance, if a system can infarfrom A and B then it is likely to be able to
infer C from C and DO so thoughts are obviously not just organized
according to their content, but also according keirt structure. A
syntactically operating system takes care of that.

LOTH clearly sets the scene for symbolic architeztuTheir task consists in defining
a format for#P# (i.e. data structures for the different kinds afmal representations),
distinguishing and defining the differeRs (laying out an architecture that handles
beliefs, desires, anticipations and so on), ancipeg the set of operations over
these#P# (the different kinds of cognitive processes).

Not all theorists of cognitive modeling, even thbughey tend to accept
functionalist materialism and the representatighabry of mind, agree with Fodor’s
proposal, however; many connectionists argue tlymbslic systems lack the
descriptive power to capture cognitive processasgfreview, see Aydede 1995). Yet
they will have to answer to the requirements pdsegdroductivity, systematicity and
inferential coherence by providing an architectthiat produces these aspects of
mental processes as an emergent property of nobedigmprocessing. Fodor
maintains that a connectionist architecture capablgroductivity, systematicity and
inferential coherence will be a functional realiaatof a symbolic system (i.e. the
connectionist implementation will serve as a suatstifor a symbolic architecture)
(Fodor and Pylyshyn 1988).

A weighty argument in favor of connectionism is faet that low-level perceptual
and motor processes—which may be regarded as gbtive (Newell 1987)—are
best described as distributed, non-symbolic systems that the principles governing
these levels might also apply to propositional khig (Derthick and Plaut 1986). Are
Language Of Thought systems just too symbolic? Aneationist description might
be better suited to capture the ambiguity and hess of thought, where a symbolic
architecture turns brittle, fails to degrade grattgfin the face of damage or noise,
does not cope well with soft constraints and hablpms to integrate with perceptual
pattern recognition.

Connectionists might either deny strict systemiti@gind compositionality of
thought (Smolensky 1990, 1995; see also Chalmed8,11993), or regard them as an
emergent by-product of connectionist processingdg#ia 1997).

This is the line where classical and connectionistels of cognition fall apart.
Where Fodor states that because of the productivRystematicity and
compositionality of thought, symbolic languages #ne right level of functional
description, connectionists point at the vagueméshought and argue that the level
of symbolic processes is not causally closed @an not be described without
recurrence to non-symbolic, distributed operaticas)l is therefore not the proper
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level of functionality (see: Rumelhart and McClelia1986; Fodor and Pylyshyn
1988; Horgan and Tienson 1996; Horgan 1997; McLhaghnd Warfield 1994;
Bechtel and Abrahamsen 2002; Marcus 2002).

Are classicist and connectionist approaches eivalOf course, all computational
operations that can be performed with a connediayistem can be implemented in a
symbol manipulation paradigm, and it is possible hrd-wire an ensemble of
connectionist elements to perform arbitrary symialnipulation, but the difference
in the stance remains: symbolic processes (espec&dursion), which seem to be
essential for language, planning and abstract thipwage difficult to model with a
connectionist architecture, and many relations the¢ easy to capture in a
connectionist system are difficult to translateoirg symbolic, rule-based system,
without emulating the connectionist architectura. gractice, however, the line
between classical and connectionist models is mwehys clear, because some
classical models may represent rule sets as spigaaktivation networks, use
distributed representations and even neural legf@ind some connectionist systems
may employ localist representations for high-levabstract operations. Hybrid
systems may combine connectionist and symbolicitetiires, either by a common
(semi-symbolic) mode of representation that alldevsboth kinds of operations (Sun
1993; Wermter, Palm et al. 200%)pr by interfacing a symbolic control layer with
sub-symbolic perceptual and motor layers (Konolid@62; Feldman 2006).

Apart from the connectionist attack, there is aaofhont against Fodor’s proposal in
Cognitive  Science, which denies the second assomptof LOTH—
representationalisrf. This position is exemplified in earlier works ob@ey Brooks
(Brooks 1986, 1989, 1991, 1994; Brooks and SteBB)@nd denies Fodor’'s dictum
of “no cognition without representatiofl975), by stating thatthe world is its own
best modéland the relevant functional entities of cognitipecesses would not be
information structures stored in the nervous systéran individual, but emergent
properties of the interaction between the individuad its environment. Therefore, a
functional cognitive model either requires the ustbn of a sufficiently complex
model of the environment, or the integration of thedel of mental information
processing with a physical (or even social) envinent (Dreyfus 1992). The
proponents obehavior based roboticéBeer 1995; Arkins 1998; Christaller 1999;
Pfeifer and Bongard 2006) sometimes reject the doroption and insist on a physical
environment, either because of objections to femetism (i.e. because they think
that the simulation of a physical environmeninigrinciple an impossibility), or just
because they consider a sufficiently complex emvitental simulation to be
practically impossible. Taken to the extreme, bérdvased approaches even become

75 This is the approach taken by the author in tleei§ipation of the MicroPsi architecture.

76 There is a vast variety of objections agaaisspects of LOTH in the philosophy of mind,
but because most of them are incompatible with rapzdational theory of mind and thus do
not follow the basic assumptions that we have mwlglen considering cognitive architectures
as a method to model mental processes, they afeviant in the given context.



113

behaviorist and deny the functional relevance oftalerepresentations altogether,
treating them as an irrelevant epi-phenomenon (Brd®92; van Gelder 1995; Beer
1995; Thelen and Smith 1994). Even in their norieadormulation, behavior-based
approaches sometimes deny that the study of cognitiay be grounded on a
separation of system and environment at the lefviHeonervous system. Without the
inclusion of an environment into the model, the léavel configurations of the

nervous system do not make any sense, and sin¢e léngl configurations are

inevitably based on these low level structurestualysof cognition which draws a
systemic line at the knowledge level, at the neleaél or at the interface to the
physical world, is doomed from the start.

By highlighting low-level control of interaction Wi a physical environment,
behavior based systems achieve fascinating ressiitsh as passive walkers (for
instance, Kuo 1999; Pfeifer 1998; Collins et al02)) which produce two-legged
walking patterns without the intervention of a ciige system. The credo of such
approaches might be summarized as “physics is tiogsibest friend,” and they
sometimes see cognition primarily as an extensfauch low-level control problems
(Cruse, Dean and Ritter 1998; Cruse 1999). | seedyjections to radical behavior-
based approaches, which in my view limit their &ailility to the study of cognitive
phenomena: First, while a majority of organisnidrasophila the fruitfly, for
instance) manages to capitalize on its tight irggn with physical properties of its
environment, only a small minority of these orgamssexhibits what we might call
cognitive capabilities. And second, this majoritf taghtly integrated organisms
apparently fails to include famous physicist Stephiawking, who is struck with the
dystrophic muscular disease ALS and interacts thighworld through a well-defined
mechatronic interface—his friendship with physiakes place on an almost entirely
knowledge-based level. In other words, tight sewsmpling with a rich physical
environment does neither seem a sufficient nor gessary condition for cognitive
capabilities.

Also, dreaming and contemplation are being besterstdod as cognitive
phenomena; and they take place in isolation frorphgsical environment. The
physical environment may have been instrumentalbuilding the structures
implementing the cognitive system and forging tloatents of cognition, and yet,
after these contents are captured, it does not toepldy a role any more, in defining
the semantics of thought during dreaming, meditatimd serendipitous thinking.
Even when high-level cognitive processing is codpMth the environment, it does
not follow that the nature of that coupling has ecidive influence on this
processing’

" Andy Clark and Josefa Toribio (2001), in a commentan O’'Reagan and Noé&'s
“sensorimotor account of vision and visual conssimss”, have denounced the view that
conscious processing could only be understood mjuoation with environmental coupling as
“sensorimotor chauvinism”. They point out the exémpf a ping-pong playing robot
(Andersson 1988), which does not know visual exgpee, and yet performs the task—and on
the other hand, they argue that it is implausibé &ll changes to our low-level perception, for
instance in the speed of saccadic movement, waildehce conscious experience. Because
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For reasons of technical complexity, it might bsieato couple a cognitive model
with a physical environment instead of a simulatiand a lot may be learned from
the control structures that emerge from that commecAnd yet, the organization and
structuring of a cognitive system might be an ehtidifferent story, according to
which the division of the modeled system and thesigienvironment at the somatic
level or even above the neural level might be assappropriate as the intuitions of
symbolic and sub-symbolic cognitivists suggest.

2.2 Machines of Cognition

Cognitive architectures define computational maebims models of parts of the
mind, as part of the interaction between cognifiwections and an environment, or as
an ongoing attempt to explain the full range ofritige phenomena as computational
activity. This does, of course, not equate the huménd with a certain computer

architecture, just as a computational theory ofnmsgy—a unified mathematical

theory of physics—maintains that the universe isspesed by a certain computer
architecture. It is merely a way of expressing lileef that scientific theories of the

mind, or crucial parts of research committed toettds understanding of the mind,

may be expressed as laws, as rules, as systemedig@drities, that these regularities
can be joined to a systematic, formal theory, drad this theory can be tested and
expanded by implementing and executing it as a coengprogram.

2.2.1 Cognitive Science and the Computational Theor vy of Mind

If we take a step back from the narrow issue whethe should use a symbolic
computational engine to describe cognition, or & should aim at specifying a
symbolic computational engine that describes a symbolic architecture which
takes care of producing cognitive functionality dathis is, in my view, what the
guestions boils down to), the fact remains thaih@og modeling is committed to a
computational theory of mind (see Luger 1995 forimnoduction). There are two
viewpoints in Cognitive Science with respect to tbenputational theory of mind (i.e.
that the mind can be described as a computatiogahe). The theory may be seen as
an ontological commitment (in the form that eithére universe itself is a
computational process (for instance: Wolfram 20@2) thus everything within it—
such as minds—is computational too, or that attleasntal processes amount to
information processing). But even if one does miiissribe to such a strong view, the
theory of mind may be treated as a methodologioairoitment. This second view,
which | would like to call the “weak computationgétheory”, has been nicely

there seems to be no a-priori reason to believe tthia is the case, actual environmental
coupling is not only an insufficient condition, Hikely also not a necessary condition for high-

level cognition and consciousness. For high-levehtal activity, higher level mechanisms

(Prinz 2000) such as memory retrieval, planning] aeasoning should be constitutive. Of

course, this view flies into the face of a lot ohtemporary arguments in the area of behavior-
based robotics.
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formulated by Johnson-Laird, when he saltis the mind a computational
phenomenon? No one knows. It may be; or it mayrdepa operations that cannot
be captured by any sort of computer. (...) Theookthe mind, however, should not
be confused with the mind itself, any more thawrike about the weather should be
confused with rain or sunshine. And what is cleathiat computability provides an
appropriate conceptual apparatus for theories oé tmind. This apparatus takes
nothing for granted that is not obvious. (...) algar and explicit account of, say,
how people recognize faces, reason deductivelgtermew ideas or control skilled
actions can always be modelled by a computer progrgJohnson-Laird 1988)

Indeed, cognitive models can be seen as the att#mplucidate the workings of
the mind by treating them as computations, not seardly of the sort carried out by
the familiar digital computer, but of a sort thatd within the broader framework of
computation” (ibid, p. 9)78 Thus, a complete explanation of cognition wouldsist
of a computational model that, if implemented apragram would produce the
breadth of phenomena that we associate with cagnitin that sense, the
computational theory of mind is an empirical orntgaredicts that there may be such a
program. Unfortunately, this does not mean thattdraputational model of the mind
could be falsified based on its predictions in astyict sense: If there is no
computational model of the mind, it may just melaat it is not therget This lack of
falsifiability has often been criticized (Fetzer919. But does this mean that the
computational theory of mind is of no empirical sequence at all and does not have
any explanative power, as for instance Roger Blfi®90) states? Binnick applies
the same criticism to Chomsky's theory of languég@bomsky 1968), even though
“linguistics constitutes (apart from the theory fian and perhaps a few corners of
neuropsychology) just about the only cognitiveeystor which we can say we have
something like a formal and explicit theory of stsucture, function, and course of
development in the organisits. R. Anderson 1989, p. 810).

From the viewpoint of natural sciences, this dsfic is surprising, and in most
cases may be assumed to originate in a misunddimstarof the notion of
computation. All theories that are expressed inhsacway that they may be
completely translated into a strict formal language computational in nature. The

8 This does not mean that a digital computer ispabée of performing the computations in
question. Here, Johnson-Laird hints at paralldirithisted processing as opposed to sequential
binary operations in a von-Neumann computer. Theratfpns that are carried out by a parallel
distributed system can be emulated on a digitalpzder with sufficient speed and memory
with arbitrary precision. Computationally, parali@istributed operations do not fall into a
different class than those executed by a traditisoa-Neumann computer; both are instances
of deterministic Turing machines with finite memo#n exception would be systems that
employ certain quantum effects (non-locality andwdtaneous superposition of states). Such a
quantum computer may be in more than one statenet and thus execute some parallel
algorithms which a deterministic Turing machinefpens in non-polynomial time in linear
time (Deutsch 1985). Indeed, some theorists mairtt@t such quantum processes play a role
in the brain and are even instrumental in conscposesses (Lockwood 1989; Penrose 1989,
1997; Stapp 1993; Mari and Kunio 1995). Howeveer¢his little evidence both for quantum
computing facilities in the human brain and thelamptory power of such states for cognitive
processes or consciousness is questionable.
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ontological or methodological assumption that iglenby the computational theory of

mind is not unique to Cognitive Science, but ubiously shared by all nomothetic

(Rickert 1928) sciences, that is, all areas whiohat theories that describe a domain
exhaustively using strict laws, rules and relatiofkis is especially the case for
physics, chemistry and molecular biology.

Of course, there are areas of scientific inquiryiclwtdo not produce insights of
such nature, but are descriptive or hermeneutiedas These sciences do not share
the methodology of natural sciences. Indeed, tjection of a computational stance
with respect to a subject marks that the field mfestigation is one of the cultural
sciences (humanities). To treat psychology as aralascience means to subscribe to
the computational theory of mind—either in its weakeven in its strong form (see
also Dorner 1999, p. 16).

This view has also been expanded upon by Aaron &lofS8loman and Scheutz
2001, Sloman and Chrisley 2005). Sloman charaeerihe task of describing the
world as a quest for suitable ontologies, which roaynay not supervene on each
other (Kim 1998). When describing systems that idescother systems, we will
create second-order ontologies. If such systems describe their own descriptions,
recursive third-order ontologies will need to bepdoyed (this is where it ends—
further levels are addressed by recursion withi@ tthird). Conceptualizations of
second order and third order ontologies are crestad virtual machines A virtual
machine is an architecture of causally relatediestivhich captures the functionality
of an information processing subject or domain, #&nchental phenomena can be
described as information processing, then a thedrgognition will be a complex
virtual machine.

Contrary to the intuition that machines are alwaytifacts, here, a machine is
simply seen as a system of interrelated parts whiehdefined by their functionality
with respect to the wholeMachines need not be artificial: organisms are niaeh,
in the sense of ‘machine’ that refers to complexcfioning wholes whose parts work
together to produce effects. Even a thunderclou@ imachine in that sense. In
contrast, each organism can be viewed simultangoasl several machines of
different sorts. Clearly organisms are machinest tten reorganise matter in their
environment and within themselves, e.g. when gipwiike thunderclouds, windmills
and dynamos, animals are also machines that acquiere, transform and use
energy’ (Sloman and Chrisley 2005)

For a given system (given by a functional desaiptiwith respect to its
environment), however, it is not always clear wtieg functional parts are—there is
not even a guarantee that there is sufficient mavtulwithin the system to allow its
separation into meaningful parts. An ontology #cifies parts needs to be justified
with respect to completeness—that the parts togétdeed provide the functionality
that is ascribed to the whole—and partitioning—thtatloes not misconstrue the
domain. For example, if the gearbox of a car iscdlesd as the part that takes a
continuous rotational movement with a certain aagumomentum from the
crankshaft and transforms it into a variety of elifint rotational movements with
different momentums to drive the wheels, this midjet a good example for a
functional element. If the gearbox is removed agplaced by a different unit that
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provides the same conversion, the function of trerall system—the car—might be
preserved. Such a separation is often successhibliagical systems too. A kidney,
for instance, may be described as a system ta fileztain chemicals from the
bloodstream. If the kidneys are replaced by arficdi contraption that filters the
same chemicals (durirgjalysis for instance), the organism may continue to fiamct
as before. There are counterexamples, too: a ngsemu ontology may specify the
fuel of the car simply as an energy source. Ifftred tank would be replaced by an
arbitrarily chosen energy source, such as an @attrattery, the car would cease to
function, because fuel is not just an energy squratin order to be compatible with
a combustion engine, needs to be a very speciéatafpat when mixed with air and
ignited shows specific expansive properties. It nmeyrhaps be replaced with a
different agent that exhibits similar functionabperties, such as alcohol or natural
gas, provided that the compatibility with the erggia maintained. Even then, there
might be slight differences in function which leiadfailure of the system in the long
run, for instance, if the original fuel has beeoviding a lubricating function which
has been overlooked in the replacement. Similéinky,mind is not just an information
processing machine (for instance, a Turing Machi8é)l, it may in all likelihood be
described as an information processing machineedls iw the same way as fuel in a
car may be depicted as an energy source, but #ssrigtion would be far too
unspecific to be very useful! The difficulty doestonly stem from the fact that there
is little agreement in Cognitive Science and psyaiy what exactly defines mental
activity (i.e. what the properties of the whole ghlibbe). Even if we are reducing our
efforts to relatively clearly circumscribed domaittse ontologies that we are using to
describe what takes place on different levels ahathvsupervene on each other are
not necessarily causally closédFor instance, language processing may be difficult
to study in isolation from the representation od abstraction over perceptual content
(Feldman et al. 1996), perception may be imposdiblestudy without looking at
properties of neural circuitry with respect to dyranization and binding (Engel and
Singer 2000; Singer 2005), and even relatively dasirceptual processing like the
formation of color categories may depend on languagpabilities (Steels and
Balpaeme 2005).

79 Causal closure may best be explained by an exarnmpraphical user interfaces, widgets
indicating similar functions may be implemented bifferent programming libraries.
Nevertheless, a click on the closing icon of a maimdow usually ends an associated
application, no matter which interface programmiiggary realizes the functionality. This
allows for the user to neglect the programming ll@fehe application and use the abstraction
of the interface when describing the system. Buttwalappens if clicking the closing icon fails
to close the application? Sometimes, the reasode®sn the level of the application interface,
for instance because the application still holdsuasaved document. In this case, the causal
frame of the application interface is not brokent Bthe window fails to close because of the
hidden interaction of the programming library wahdifferent application that uses the same
instance of the programming library, then the béraef the graphical user interface can only
be understood if the different programming librarege taken into account. The frame of the
graphical user interface is no longer a self-cor@diontology but needs to be expanded by
elements of the level it is supposedly superveroent
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The study of cognitive architectures somehow haope with these difficulties—
either by specifying a very complex, mainly qudlita architecture that does not lend
itself to quantitative experiments (see Sloman &uheutz 2003; Baars 1993;
Franklin, Kelemen and McCauley 1998), by attemptingsimplify as much as
possible by reducing the architecture to a smallo$erganizational principles that
can be closely fitted to experimental data in naraomains (Laird, Newell and
Rosenbloom 1987; Anderson and Lebiére 1998; Tokyetdinton 1988; Smolensky
1995) or by an attempt to find a middle ground (2005, Dérner 1999, Feldman
2006).

2.2.2 Classical (symbolic) architectures

Alan Newell committed himself strongly to LOTH, wiée stated his own version in
1976 (Newell and Simon 1976): “A physical symbosteym has the necessary and
sufficient means for general intelligent action diatum that has since been known as
the Physical Symbol Systems Hypothg§t&SH). According to Newell, a symbol
system is made up of

- Memory, which contains the symbol information

- Symbols, which supply patterns to index informatéond give references to it

- Operators, to manipulate the symbols

- Interpretations, which specify the operations dirersymbols

To function, a symbol system has to observe soms& raquirements: it needs
sufficient memory, and it has to realize composigbdnd interpretability. The first
condition, composability, specifies that the oparahave to allow the composition of
any symbol structure, and interpretability askg #yanbol structures can encode any
valid arrangement of operators.

A fixed structure which implements such a symbdtesn is called aymbolic
architecture The behavior of this structure (that is, the paog) only depends on the
properties of the symbols, operators and interpogts, not on the actual
implementation; it is independent of the physicabgtrate of the computational
mechanism, of the programming language and so on.

The advantages of a symbolic architecture are olsvibecause a large part of
human knowledge is symbolic, it may easily be erdofLenat 1990); reasoning in
symbolic languages allows for some straightforwaothceptualizations of human
reasoning, and a symbolic architecture can easilynade computation complete (i.e.
Turing computational: Turing 1936).
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Scale (seconds) |System IStratum
10’ Social
10°

10°

10* Tasks Rational
10°

107

10* Unit Tasks Cognitive
10° Operations

10 Deliberative Acts

1072 Neural Circuitry Biological
107 Neurons

10* Organella

Table 2.1: Layers of Description of a Cognitive t8ys (Newell 1990)

According to Newell (1990), cognitive acts spaniattcoordination, deliberation,

basic reasoning and immediate decision-making—thosatal operations of an

individual that take place in the order of hundrefisilliseconds to several seconds.
Long term behavior, such as the the generationexedution of complex plans, the
acquisition of a language, the formation and maiatee of a social role, go beyond
the immediately modeled area and are facilitatednbyy successive cognitive acts.
The neurobiological level is situated below the ritige band and falls outside the
scope of a functional theory of cognition.
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2.2.2.1 Soar
Newell has set out to find an architecture that—evheing as simple as possible—is
still able to fulfill the tasks of the cognitiveel, a minimally complex architecture
for general intelligencdi.e. with the smallest possible set of orthoganathanisms).
To reproduce results from experimental psycholagycalledregularities (covering
all conceivable domains, be it chess-playing, laggy memory tasks and even
skiing), algorithms would be implementedthin these organizational principles.
Newell's architecture (Newell 1990; Laird, NeweticaRosenbloom 1987, Jones
1996, Johnson 1997, Ritter 2002, see also the Gaaup’s homepage) is call&bar,
an acronym that stands fdstate, Operator And Resulind originated in his
conceptions of human problem solving (Newell 1988well and Simon 1972). Soar
embodies three principles: heuristic search for gbkition of problems with little
knowledge, a procedural method for routine taskd, @ symbolic theory for bottom-
up learning, implementing theower Law of LearnindLaird, Newell, Rosenbloom
1986). The first version (Soar 1, 1982) was orithjnacalled TEX (Task
Experimenter and implemented by Newell's graduate student Jalaird to
demonstrate a problem space (see below) that cmufdled with knowledge by the
user. The addition of production rule acquisiondmp-goaling have lead to Soar 2
(1983), and after Paul Rosenbloom joined the ptdjethe same year, the resulting
architecture was applied to model various problem£omputing and cognition.
Originally written in Lisp, development has switchéo C, with an interface in
Tcl/Tk. Soar has been continuously improved and dwasently arrived at version
8.4.5 (see Lehmann, Laird and Rosenbloom 2006).

Problem Space Hypothesis
Central to Soar is the notion Bfoblem Space#ccording to Newell, human rational
action can be described by:

- aset of knowledge states

- operators for state transitions

- constraints for the application of operators

- control knowledge about the next applicable operato

Consequently, a problem space consists of a sstatds (with a dedicated start
state and final state) and operators over thedesstAny task is represented as a
collection of problem spaces. Initially, a probleypace is selected, and then a start
state within this problem space. The goal is tmalfistate of that problem space.
During execution, state transitions are followeatlgh until the goal state is reached
or it is unclear how to proceed. In that case, $eaches ammpasse An impasse
creates and selects a new problem space, whicthbassolutionof the impasse as
its goal. The initial problem spaces are pre-defibg the modeler.

Problem spaces are also defined independently Soan, for example in STRIPS
(Fikes and Nilsson 1971), and generally contaiatapgoals (with the top-level goal
being the task of the system), a set of statesh(ehavhich is realized as a set of
literals describing knowledge and world model) amdet of valid operators and
constraints.
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Memory organization

Long Term Memory:
Productions control what to
do next in working memory

by specifying preferences

. Firing during
ST Elaboration Cyle
[
Working Preference Memory:
Memory: Current preferences

for available elements,
governed by productions

Perception Action
— Currently active elements (objects) e

( Context stack, goal hierarchy )
A

Figure 2.1: Soar memory organization (simplifiegk faird et al. 1987, p. 12)

Soar’s memory is made up of a working memory alahg-term memory component
which contains productions (i.e. rules whose cdoipart may match on a working
memory configuration, and whose antecedent specifieat happens whenever the
rule matches). Production rules in Soar are cdidbdinks” and are based on Ops5
(Forgy 1981).

The working memory containsentext stackthe preference memo¥yand a set
of current attribute-value-elements (call&/ME”). WMEs are multi-valued; the
attribute-value pairs of an object are called “aagtations”. Values may be
constants, numbers, strings or objects. The workirgmory is not a short-term
memory, because it is not limited in capacity ondi But unlike in long-term
memory, knowledge elements may also be removed forking memory.

The context stack holds those context objectsateturrently part of the working
memory: states (containing goals and problem spamed operators. All context
elements are connected to goals, and all goalpamteof a hierarchy. There can be
multiple contexts active at a time. Whenever a exintlement loses its connection to
the goal hierarchy (a tree with the top-most gaaihe root), it is removed. (Removal
of objects in the working memory is the task of algge collection module, the
working memory manag@rThe modification of the context stack takes plat the
decision cycle

The preference memory is used to decide which WN&sinto the working
memory or leave it. Preferences specify how likielg for an object to become part

80 Sometimes, the preference memory is not considerdme a part of the working memory
(Laird, Congdon and Coulter 1999), sometimes iRisgenbloom et al. 2001).
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of the working memory. Preference memory is segptmgluctions from the production
memory. There are several types of preferermeseptable, reject, require, prohibit,
better, worse, reconsider, indiffererdach preference is an 8-tuple consisting of a
relationship between a preference type, an olgectbject type, a comparative object
(optional, depending on the preference type), & gospace and an operator.

Elaboration cycle and decision cycle

The activity of Soar consists in alternations af ¢haboration cycleand thedecision
cycle8! During elaboration, the content of the working nogynis updated according
to the preferences. This happens by letting aldpction rules that are matching on
the workspace content become active in parallebdiction rules may match on all
current goals, problem spaces and operators ordhgext stack.) The activity of
rules may create new preferences in preference myer¢hen eventually no more
rules match (the “firing” of productions has cegs&bar has reachepiiescencand
the decision cycle is entered.

The decision cycle has to get things going agairtriggers the execution of the
current operator, if possible, and selects a neweoct object to put in on the stack, so
new rules may fire in the next elaboration cyclkisTselection of new context objects
is done according to the preferences stored ineprate memory. If preferences
conflict or are not specific enough to allow foettlecision on a new context object,
an impasse sub-goalith a respective problem space is created, wihiah the
resolution of this conflict as its objective.

Soar knows several types of impasse: if two or malements have the same
preference, there is a “tie”. If there are no predfees left in preference memory, we
have a “no change” situation. A “reject” impasseens if all available preferences
are rejected by others. If two or more elementspasderred at once, the impasse
situation is a “conflict”. Using the impasse mecisam Soar may reach every goal
(constrained by the available knowledge).

The actual problem solving work in Soar is delivkby theoperators Operators
are algorithms that describe how to reach the stte; they are executed upon the
filling of the context slots of a problem spaceaGdoes not develop new operators
on its own; rather, it has a pre-defined libraryrafre than 50 operators (implemented
weak method$or planning, including means-end analysis, Hillhbing, alpha-beta
search, branch and bound); the system may learchwibime to apply in a given
context82 Particular implementations also feature strongpilag methods, which are
domain specific (see Hill et al. 1998, for an ex&hp

81 The decision/elaboration cycle has been desciiibegveral variants: as two stages (Laird
and Rosenbloom 1994; Lehman, Laird and Rosenbloof8)13hree stages (recognition,
decision, action: Lewis 2000), four stages (sernisput, elaboration, motor output, decision:
Hill 1999) and even in five stages (input, proposkdcision, application, output: Laird et al.
1999).

82 This represents a considerable extension over Nevemd Simon’s earlier attempt at a
universal problem solving mechanism, the Generablem Solver (1961) did, among many
other restrictions, only have a single problem spmud two operators: means-end analysis and
sub-goaling to find a new operator. Also, it laclted impasse mechanism to recognize missing
knowledge (see also Newell 1992).
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The extensive problem solving capabilities of Soften make it the first choice
for cognitive models involving complex problem daly (Ritter et al. 2002). On the
other hand, Soar does discourage the implementatiofurther problem solving
methods, and models have been criticized for naleiiog human problem solving
but putting the model’s pre-defined capabilitiesviork instead (Young 1999).

Learning in Soar

Learning in Soar is achieved by the creation of pesduction rules, a process called
“chunking”. Chunking summarizes what has been kedmuring the resolution of an
impasse and is a kind of “explanation based legfnWhenever a result for the next
higher goal is found, a new production (“chunk”cigeated, which consists of a set of
conditions and a set of actions. Here, conditiores those elements that had been
tested before the impasse. (Actually, not all eleimare included, but only those that
contributed to the resolution; this is achievechgsidependency analysiso the rule
does not need all current conditions to fire infitere, but only the relevant ones. Of
course, in the real world, dependeny analysis isrgrone. If dependencies are
misconstrued, this leads to overgeneralizationnolengeneralization of the new rule.)
The action part of the new rule consists of thasdepences that have been found as
the resolution.

The new chunks are placed in production memory idiately, and are available
on the next elaboration phase, thus Soar's leaiisingtertwined with its problem
solving.

There is no forgetting mechanism for productions.

Summary

Perception and action are originally not integraitp of the Soar architecture—they
are supplied by independent, asynchronous modER&Z, Chong and Laird 1997).

These modules may write perceptual content dirdatly working memory, or read

actuator commands from there (the feedback frommadots may be written back into
working memory by the perceptual module). To makee ghat the context does not
inadvertedly shut down perception and action, tfeeespecial context independent
“encoding” and “decoding” productions to translattween different levels of action

and perception. Table 2.2: Assumptions of Soarrd, &lewell, Rosenbloom 1987, p.
58) gives a summary of the assumptions that atzedan Soar.
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The Psi theory as a model of cognition

1. Physical symbol system
hypothesis

A general intelligence must be realized with
a symbolic system

2. Goal structure hypothesis

Control in a general intelligence is
maintained by a symbolic goal system

3. Uniform elementary-
representation hypothesis

There is a single elementary representation
for declarative knowledge

4. Problem space hypothesis

Problem spaces are the fundamental
organizational unit of all goal-directed
behavior

5. Production system hypothesis

Production systems are the appropriate
organization for encoding all long-term
knowledge

6. Universal-subgoaling hypothesis

Any decision can be an object of goal-
oriented attention

7. Automatic-subgoaling hypothesis

All goals arise dynamically in response to
impasses and are generated automatically
by the architecture

8. Control-knowledge hypothesis

Any decision can be controlled by indefinite
amounts of knowledge, both domain
dependent and independent

9. Weak-method hypothesis

The weak methods form the basic methods
of intelligence

10. Weak-method emergence
hypothesis

The weak methods arise directly from the
system based on its knowledge of the task

11. Uniform-learning hypothesis

Goal-based chunking is the general learning

mechanism

Table 2.2: Assumptions of Soar (Laird, Newell, Rddeam 1987, p. 58)

There are hundreds of individual contributions taiSin the form of domain specific
models by other researchers; Soar has been extemdedpplied in many ways, for
instance to model air traffic control (Bass et1#95, Chong 2001), to study visual
cognition (Hill 1999), to control a fighter planM@dSAF Tac-Air system, Tambe et
al. 1995). Soar has also been implemented as aoswubolic system (Cho,
Rosenbloom and Dolan 1993).

Despite its many successful applications, criticremains, especially concerning
the many degrees of freedom offered by Soar. Wioarfrented with the same task,
different experimenters frequently seem to end uh wifferent, equally plausible
models (Young 1999); in this respect, Soar is peshat least as much an Al
programming language (Ritter, Baxter, et al. 20@8) it is a model of human
cognition.

2222 ACT-R
John Anderson’s ACT theory (Anderson 1983, 1990dé&son and Lebiere 1998, see
also ACT-R Group’s homepage) is—next to Soar—culyetihe most extensively
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covered and applied model in the field of symbadalmgnitive architectures, and
probably the one best grounded in experimental tpsiggical research literature
(Morrison 2003, p. 30). ACT is an acronym that saggally stands for tha&daptive
Character of Thoughfit meant theAdaptive Control of Thougtgarlier, has also been
reported to abbreviatétomic Components of ThougiMorrison 2003) and perhaps,
it just refers toAnderson’s Cognition TheoryJust as Soar, ACT-R is based on
production rules, but unlike Soar, ACT-R (until sien 5) does not fire them in
parallel, and it allows for real-valued activatiofisstead of a binary on-off). Also,
while productions in Soar may only vote on whatd@ne by setting preferences,
productions in ACT-R directly govern what happens dpecifying actions in the
working memory.

History of ACT-R

The theory has its roots in a model of human aaswei memory (HAM, Anderson
and Bower 1973), which itself has been an extensioRRAN (Free Recall in an
Associative NetAnderson 1972). HAM was an attempt to provideeacdiptional
language of mental content, made up of hierarcbiezodes in a semantic network
and featuring associative recall. Influenced by He work on modelling control
structures with production rules (Newell 1972, 197Bnderson later added a
procedural memory based on production rules, wigdhto the first formulations of
ACT (see Anderson 1996). Different versions of A€T theory earned successive
descriptional letters, with the first one being ABTin fall 1974. By 1976, the theory
had already arrived at ACT-E (Anderson 1976). ACin¢éluded an extensive model
of production acquisition. The successor of ACT-Bswsupposed to conclude the
ACT family of models. Because it introduced majbacges, such as the switch from
a step-based model of activation spreading to &iraayus time model, it was named
ACT* (Anderson 1978, 1983).

An implementation of ACT* is part of GRAPES (Sauargl Farrell 1982). After
refining the declarative structure, Anderson reteathe implementation PUPS (for
Penultimate Production Syste#inderson and Thompson 1989).

Revisions and extensions of ACT*, which have pat theory closer to a neural
realization and which also included a new confiegolution mechanism, led to ACT-
R (Anderson 1993). The ‘R’ abbreviatBsitional and refers to Andersonistional
analysis(Anderson 1990, 1991). ACT-R underwent a succassfdmplementations
(ACT-R 2.0, 1993; ACT-R 3.0, 1995). With ACT-R/PM\{rne and Anderson 1998;
Byrne 2001), perceptual and motor facilities wenéraduced into the model by
incorporating research in the cognitive architeetBPIC (Kieras and Meyer 1997)
and using a visual interface (Anderson, Matessalatiére 1997). The additional
components ran in parallel to the core ACT modelanre incorporated into ACT-R
4.0 (1998) and its successors. Meanwhile, a la@anmunity using ACT-R for
cognitive modeling had emerged, there were fronisefor different operating
systems (Bothell 2001; Fincham 2001), and by Seip&en2004, about a hundred
published models had been developed, covering e maidige of cognitive phenomena
(Anderson et al., 2002).

ACT-R 5.0 (2001) extended the sensory-motor faeditand became quite
modular; it offers different memory sub-systemsfigns) for goals, visual processing
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(including a “what” and “where” distinction, Ungeitler and Mishkin 1982),
auditory processing, vocal production and manusibae-which are meant to be
somewhat like the “slave modules” of working memayggested by Baddeley
(1986).

Chunks

A working memory element in ACT-R is called “chunkinstead of the
“augmentations” of WMEs in Soar, ACT-R chunks halets, which are associated
to an attribute—an external object, a list or amotthunk. A real-valued link
facilitates this connection, so vague attributesob@e possible. Usually, there are
three to four slots and a maximum of seven—to eadmds with more than seven
elements, chunks have to be organized into a loieyd? To encode more than seven
facts about a concept, ACT-R also features typeritdnce: each chunk may be
connected by an “is-a”-link to a super-concept €ygrom which the chunk inherits
additional features. Let me elaborate a little @TAR’s representations here, because
this will prove helpful when looking at the way repentation is handled by the Psi
architecture later on.

ADDITION-FACT INTEGER

0

L
/

VALUE VALUE VALUE

@ ®

Figure 2.2: An example chunk structure (see Schoppd Wallach 2003)
The example (

Figure 2.2) expresses that ‘three’ (whistan ‘integer’ and refers to the integealue
3, plus ‘four’ (whichis an‘integer’ and refers to the integealue 4) equals ‘seven’
(whichis an‘integer’ and refers to the integealue?), whichis an‘addition fact'.

83 The ‘magical number seven’ (plus/minus two) isenftmentioned when discussing

constraints on the number of elements that candoeeased at a time in working memory
operations. This number originated in a classicatkwby Miller (1956). Later work has been

more conservative and tends to put the limit agghio four indepentend elements (Crowder
1976; Simon 1974).
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Chunk types are defined by a name and a list ¢6;dlloey are noted in the form
(CHUNK-TYPE <name> <slot 1> <slot 2> ... <slot m)

The slots of a chunk receive their semantics froentype; the example of a chunk
structure above can simply be specified by:

(CLEAR-ALL)
(CHUNK-TYPE addition-fact addendl addend2 sum)
(CHUNK-TYPE integer value)
(ADD-DM (fact3+4
isa addition-fact
addendl three
addend2 four

sum seven)
(three

isa integer

value 3)
(four

isa integer

value 4)
(seven

isa integer
value 7)

Here, first the two types ‘addition-fact’ (with tlztributes ‘addendl’, ‘addend2’ and
‘sum’) and ‘integer’ (with the attribute ‘value’)ra defined. Then, the addition-fact
‘fact3+4’ is established. It inherits its slots fnothe type ‘addition-fact’ and binds
them to the chunks ‘three’ (for the attribute ‘add#’), ‘four’ (for the attribute
‘addend?’) and ‘seven’ (four the attribute ‘sunfinally, the three integer elements
are defined; each of them inherits their ‘valuetstom the type ‘integer’ and binds it
to a number. This tiny example is just meant teesas an illustration of how chunks
form a hierarchical semantic network (an introdaetinto ACT-R programming is
given by Lebiére 2002; Schoppek and Wallach 2008js network of chunks makes
up the declarative memory of an ACT-R model.

ACT* and ACT-R have both claimed to bridge the dagtween neural-like
implementation and symbolic computation. The cotioaist implementation of
ACT-R, ACT-RN (Lebiere and Anderson 1993), is atempt to substantiate that
claim. Here, the declarative memory works as amwma@atve memory: chunks are
retrieved based on their name or some of theinglhtes. The implementation makes
use of a simplified Hopfield network (Hopfield 1984ith real values. Each slot and
chunk name is a “pool of units”. There are no catinas between the slots—only
the chunk name pools (“headers”) are associatedhter units. (Unlike in a Hopfield
network, retrieval here does not utilitze an enemgyimizing approach, but works
simply by backward-forward mapping between slotd haaders: depending on the
given slots, headers are activated, and then #utivation spreads to the missing
slots.) To limit the number of links, in the contienist implementation, the
declarative memory is split into several areas.hilfieach area, all chunks are fully
connected to each other.

ACT-RN has been used in several cognitive models$, Has been abandoned
nonetheless, because it was considered too unwietdihe intended applications—
the development of current ACT-R versions focusessymbolic implementations.
Even so, the retrieval of chunks partially followvsub-symbolic paradigm: spreading
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activation. To choose a chunk from declarative mginthere is an initial matching
process against given conditions, and if there cmeflicts, the chunk with the
highest activatior is selected. This activation is computed as

A=B+2Ws (2.1)

whereB; is thebase level activationf the chunk (defined depending on previous
usage) and the sum reflects thesociative activatiorthat originates in sources of
spreading activation and is transmitted througtghieoring chunkg (w; being the
activation of these, ang the strength of the link from these chunks to ¢herent
chunki). The activation available from a source diminshegarithmically depending
on the number of links it spreads infar( effecy.

The probability of retrieving a chunk is determirtad
1
l+e s
with ¢ being a threshold value argl some random noise to make retrieval
stochastic.
The time to retrieve a chunkafency has been adjusted to match experiments
with human subjects and is set at

T =Fe"; F=0.35€

Productions

In addition to the declarative memory, ACT-R prog®a procedural memory. Such a
distinction has for instance been suggested byr&daB94), but is far from being
undisputed in the literature of psychology (Mull&¥93). Procedural memory consists
of productions, which coordinate the cognitive babausing a goal stack that is laid
out in working memory.

Procedural Memory: Declarative Memory:
Production rules Chunks
specifying cognitive providing hierarchical
algorithms and strategies object descriptions (facts)

A A
execution retrieval
match storage

Y

Working Memory:

Perception Action

encoding Active knowledge performance

Figure 2.3: ACT-R memory organization (simplifiede $&nderson 1983, p. 19)

State changes in the working memory and operationthe goal stack are triggered
by the firing of productions. If several producttomatch the current goals and
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knowledge at the same time, a conflict resolutioecihanism is invoked, which
attempts to fire the production that has the higleifity with respect to the given
goals.

Anderson uses chunks and productions to encode #inels of representations
(Anderson, 1983, p. 47): temporal strings, spatieges and abstract propositions.
These representations are somewhat similar totsof§rhank and Abelsson 1977)
and schemas (Minsky 1975), but unlike in scripsts lformed by elements of a chunk
are very much restricted in length, and unlike dhesnas, the links are directed, i.e.
the inverse direction may have a different link g¥gior no link at all, so that retrieval
based on spreading activation does not work equaéil in all directions. This
asymmetry is empirically evident in human cognitié®ne can only go from the
instantiation of the condition to the executionagtion, not from the action to the
condition. This contrasts with schemata such asbiinger-seller schema, where it is
possible to instantiate any part and execute aryemtpart. The asymmetry of
productions underlies the phenomenon that knowledgéable in one situation may
not be available in another. Schemata, with theguadity of access for all
components, cannot produce this. Also, in manyscse symmetry of schemata can
lead to to potential problems. For instance, frame fact that the light is green one
wants to infer that one can walk. One does not warihfer that the light is green
from the fact that one is walking. No successfuhegal-purpose programming
language has yet been created that did not havasgmmetric conditionality built in
as a basic property.{Anderson 1983, p. 39)

Buffers
The working memory is divided into a set of buffdrsACT-R 5.0, these are
- the goal buffer, which represents the current pwsiin a task and preserves
information across production cycles (in ACT-R @lfgere are multiple goal
buffers)

- the retrieval buffer, where activation computatitaee place and information

retrieved from declarative memory is held

- the visual buffers: location and visual objectsemion switches correspond

to buffer transformations

- the auditory buffers: analogous to visual buffers

- the manual buffers, which implement a theory on maamovement

- the vocal buffers, which provide a less developaterface for vocal

production.

The antecedent part of a production specifies d god additional conditions
together with a respective buffer, where a testafanatch of these conditions takes
place. The consequent of a production consists a&fetaof actions, which are
transformations that have to be applied to indigichwuffers.

Production Cycle

The matching, selection and execution (firing) ofdquctions defines thproduction
cycle In each cycle, only one production may fire. Censely, only a single object at
a time may be held in each workspace buffer, soferations in ACT-R’s core are
necessarily sequential. This is meant to mimic llb&leneck of higher cognitive
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functions (Pashler 1998). Processes within the mesdassociated to the buffers (for
instance, within the visual module) may nevertrelss working in parallel.

During matching the condition part of each production is comparéd the state
of the current goal on the stack. On a successhitim the production enters the
conflict set thus, the current goals always set the contetti@fictivity of the system.

The selectionmechanism aims at finding the best productiorhi ¢onflict set,
based on matching them with facts from declaratieenory.

The second mechanism to resolve conflicts betweedugtions is based on their
utility with respect to the given goal:

U =RG-G+s (2.3)

P; is the success probability of the productiof® is the gain associated with the
goal, C; is the cost associtated with the producti®specifies noise. The probability
of success is estimated as

Successes
Successes Failure

To account for stochasticity, the probability obolsing a matching production is

adjusted using

(2.4)

Prob{i) =% (2.5)

with t being a constant; the sum depends on the utifitplloother available
matching productions.

During theexecutiorof the winning production, either the goal is nfisdi, a new
goal is put on the stack, a goal is achieved occadded (and thus popped from the
stack) or a previous goal is restored. ACT-R damdenture a goal hierarchy (such as
Soar), but can emulate this to some extent by pgssiib-goals on the stack in the
right order. Because of this, sub-goals are nobraatically removed when a high-
level goal is reached.

Learning
Learning in ACT-R takes place to adapt the systeiine structure of its environment
(Anderson and Schooler 1991). This happens eitk@icély via the creation of new
elements (chunks and productions) or implicitly, lgjusting activations of
knowledge elements (Anderson, Bothell, Byrne, Dasgl Lebiere and Qin 2004).

Declarative knowledge encodes either environméwmaWwledge (in most models,
this seems to be hand-coded), or is created bygyhem whenever a goal is taken
from the stack (i.e. is achieved). The result hank that is usually compiled from
the statement of the given task and its solution.

The explicit learning of productions is based onsgecial type of chunk:
dependencies

Whenever a task has been fulfilled using a compigcess, a dependency goal
may be created. Depencency goals are directeddarstanding the solution. When a
dependency goal is taken from the stack, a newystaxh is created. This production
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encodes the solution, so that next time the sysseoonfronted with the task, the
solution may be recalled immediately.

Procedural Memory

explicit learning strategies explicitly learned rules

Declarative Memory

Figure 2.4: Learning using dependency chunks (seg¢gén 1999, p. 135)

Implicit learning affects both the declarative atie procedural memory. Firing
strengthens productions by increasing their basel lactivation, and chunks in
declarative memory are strengthened by usage asThéd happens according to

n
B=In)t™ 2.6
( j
j=1

wheret; is the time that has passed sincejthasage of the itend is a constant
(usually set to 0.5).

Summary

The ACT theory allows the reconstruction of a wiggiety of cognitive tasks. One
notable early example was the application of réoorgn programming (Anderson,
Farell and Sauers 1984; Anderson, Pirolli and Far@88); Anderson subsequently
applied the results of his model of knowledge rspngation to intelligent tutoring
systems (Anderson, Boyle, Corbett and Lewis 1990clekson, Corbet, Koedinger
and Pelletier 1995; Anderson and Reiser 1985), hwisigccessfully improved the
learning rate of students. Since then, every yeer $een a wide variety of new
cognitive models supplied by a vital community o€RR users. The immense
success of ACT stems from the fact that it allowstésting its cognitive models by
comparing computation times with those of humanjesatb, without making more
than a few very basic assumptions on the speectivhtion spreading.

Anderson maintains that ACT-R is a hybrid architeet because it combines the
explicit learning of discrete memory structureshwiBayesian reasoning supplied by
its associative memory structures. However, Andeésssemantic networks are
strictly localist®4 and distributed representations only play a nolexternal modules,
which are not an integral part of the architectudevertheless, Anderson’s group
boldly claims that ACT is also a theory on how cdign is facilitated in the brain,
insofar as they map individual parts of the ardhitee to functional areas of our
favourite organ (Figure 2.15). This mapping alsoresponds to assumptions about
execution time in the model, for instance, thenfirof a production (50ms) is said to

84 Ron Sun (Sun 2003, p. 5) characterizes sub-symhwoiits as not being individually
meaningful. In this sense, the distinction betwsgmbolic and sub-symbolic systems does not
allude to whether link weights are strictly binaoy real-valued, but whether the links
implement a distributed representation of concepts.
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correspond to activation spreading from the cotexhe basal ganglia and back
(Lebiére, Wallach and Taatgen 1998).

Intentional Module Declarative Module
(not identified) (Temporal/Hippocampus)
N\ Il
Goal Buffer Retrieval Buffer
(Dorso-Lateral Prefrontal Cortex) (Ventro-Lateral Prefrontal Cortex)

AN /L

| Matching (Striatum) |

Productions l Selection (Pallidum) ]
(Basal Ganglia) ,l,

| Execution (Thalamus) |

A NN

Visual Buffer Manual Buffer
(Parietal) (Motor)

X x

V4 ~
Visual Module Manual Module
(Occipital/etc.) (Motor/Cerebellum)

Y
Perception Action
Figure 2.5: Sketch of ACT-R structures as mapped thet brain (see Anderson et al.

2004)

Yet, even though it can be fitted to experimenthviuman subjects, it is not clear if
the production paradigm literally depicts neurativaty or just marks a convenient
way of programming cognitive models (Gardner 198946). Knowledge in ACT-R
models is usually not acquired step by step byagath experience in an environment
(Hesse 1985), but pre-programmed by the experimetite individual knowledge

85 While the published literature on ACT-R makes indgbd claim that the firing of
production rules refers to the activity of the Baganglia, it is probably not reasonable to take
this literally. Even John Anderson, when confrontet a 2006 workshop during the
International Conference of Cognitive Modeling) witte fact that lesions to the basal ganglia
do not seem to impair processes like the retriefgast tense, respondetiDamage to the
basal ganglia does not seem to result in resultseagre as you would expect them based on
the theory. What this means, to the theory, is thete seem to be other pathways and things
humans can fall back on, like declarative knowleddgere may be other pathways that can
pass that information; the neural connections asenamerous, clearly, it is not a good idea to
bet all your money on the basal ganglia. This igiobisly not the whole story.”
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units are rarely grounded in environmental intécactEspecially the chunk types are
usually pre-defined by the experimenter. Indeekk Boar, ACT-R has sometimes
been likened to a programming language (insteatlerig a model of cognition),
because if offers so many degrees of freedom ondugmitive functions and actual
behavior may be implemented; ACT lies somehow iwben psychology, artificial
intelligence and computer science (Jorna 199019).1

The ACT-R architecture has no representation féecti’e variables (Morrison
2003, p. 28), even though approaches exist to hattalditional modules for that
purpose to the architecture (Belavkin 2001). Th&ans that knowledge in ACT is
encoded independently from motivational and ematigrarameters, which seems to
be inadequate (Hoffmann 1990). Furthermore, knogéekas to exist in declarative
form to have an influence of the behavior of thetem.

2.2.2.3 Other symbolic cognitive architectures

While ACT and Soar do not only receive most attemiin the published literature,
they also seem to be the most mature of the egistiohitectures. Nonetheless, there
exist various further attempts at modeling humagné@wmn. Most of them concentrate
on isolated capabilities, such as memory or peiaepbut several of them provide
extensive models.

Different from ACT-R and SoarCAPS (Concurrent Activation-Based Production
Systerh (Thibadeau, Just and Carpenter 1982), like itxass0r3CAPS (Capacity
ConstrainedCAPS) (Just and Carpenter 1992) does not modeditbeg activity as
beinggoal oriented but deals mainly wittomprehensionand its early benchmarks
were tasks like reading. Using the comprehensioadigm, CAPS provides simple
problem solving and decision making capabilities.

CAPS is designed as a hybrid model that combineelic production rules with
an activation based working memory, where activeticeflect degrees of belief; the
firing of production causes a flow of activationnlite in ACT, there is unlimited
parallelism between firing rules, and no confliesolution mechanism exists. Instead,
working memory capacity constraints ensure thatdytem models conflicts and
forgetting.

Using 3CAPS, mental animation tasks (Hegarty 2081id the performance of
patients with lesions to the prefrontal cortex dgrisolving the Tower of Hanoi
puzzle (Goel, Pullara and Grafman 2001) have bematefad.

As a further development, 4CAPS (Just, Carpenter \darma 1999) offers a
detailed modular structure that is meant to cowrdpto particular brain areas, such
as Broca’s area, Wernicke’s area, and the dorsalgbeefrontal cortex; experiments
with 4CAPS are designed to predict results from fMRd PET scannings of these
areas for given tasks.

Another comprehension oriented approach isGoastruction-IntegrationC-1)
theory of Walter Kintsch. C-I is based on a theofgentence processing by Kintsch
and the linguist Teun A. van Dijk (Kintsch and vBijk 1978); Kintsch has since
argued that the comprehension process providesnargeparadigm for cognition
(Kintsch 1998).
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The fundamental representational unit in C-I ig@ppsition, not a production. It
is defined as the smallest unit of meaning to wdctruth value can be attached.
Since C-I mainly deals with language comprehensipnppositions usually
correspond to a component of a sentence, such aglaidual phrase or a clause.
Propositions are represented as a predicate aratiatexl arguments; because
propositions may share arguments, they form ancésce network. The strength of
the associations between propositions dependseonuimber of shared arguments.

Unlike ACT-R, where goals set the context of allivaty, C-I is all aboutgoal
formation The activity in C-I consists of iterations of ¢gs:

- In the first stage, rules that are approximate padially inaccurate are
constructed based on information available from ¢hgironment (bottom-
up).

- The second stage integrates these rules by downsyaeshding activation,
which is seen as a constraint satisfaction process.

The comprehension process consists in severalitiepstof these cycle® C-I
uses textual input (discourse). This has been géred inLICAI (LInked model of
Comprehension-based Action planning and Instrugtigtitajima and Polson 1995,
1997). Here, the two stages model the comprehemgian HCI task; the input is not
a text, but a situation a user finds herself in mvbsing a graphical user interface, and
later on in CoLiDeS (Comprehension based Linked model of Deliberate cBgar
(Kitajima, Blackmon and Polson 2000), an HCI taml the improvement of websites.

Because C-I theory and LICAI do not need pre-spetifjoals to work, they can
describe explorative behavior in HCI tasks bettent ACT-R, but they are focused
on text-comprehension. They have no capabilitiessfarning and problem-solving.

A particularly interesting shot at problem solving Prodigy (Minton 1991;
Carbonell, Knoblock and Minton 1991). Prodigy is architecture that models
cognition, albeit one that does not attempt to mimiman behavior in psychological
experiments, but attempts to demonstrate genasgdligrent behavior.

Prodigy makes the following assumptions:

1. A Unified Architecture of Cognition is required (Well 1976).

2. Maximum rationality hypothesis: depending on thereat goals and the
available knowledge, the system should aim at therse of behavior that
maximizes the chances of success.

3. Deliberative reasoning hypothesis: learning shdxddbased on deliberation,
to direct the activity towards maximizing utilities

4. Glass box hypothesis: all knowledge is declaragimd uniformly accessible
throughout the system.

5. Multiple learning methods: unlike in Soar, there anany different learning
paradigms.

6. Environmental consistency assumption: changes & e¢hvironment are
substantially slower than the processes that fatdlireasoning and learning

86 The model of perception featured in C-l is verycinlike the principle ohypothesis based
perception(Hypercep} as suggested by Dorner (Dorner 1999, pp. 149).
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within the system, so the environment is relativ@Bble in comparison to the
states of the cognitive model.

Prodigy implements problem solving as a searchutjinca problem space. Nodes
in this space comprise sets of goals and worléstaepresented in first-order logic);
to direct and constrain the search, additionalrobmtiles may be given. The problem
solver is complemented with a planner and severalning methods. Prodigy has
successfully been applied in blocksworld domaimecess planning, STRIPS, matrix
algebra manipulations and robotic path planningl, $trodigy is far from being a
complete model of cognition, some constraints litstapplication: for instance, it
always assumes a complete description of the emvient (i.e. knowledge is assumed
to be complete).

Most cognitive architectures, however, have beesigded as modeling tools in
Human Computer Interaction (HCI) tasks. To namevadxamples:

The Architecture for Procedure ExecutigAPEX)(Freed 1998, Freed et al. 2002)
uses Al tools to model human behavior on a tasklleAPEX consists of an action
selection component based on the planR&P (Reactive Action Package, Firby
1989), which supplies goal hierarchies and allows the pursuit of multiple
concurrent or interdependent tasks, and a setsmiurees, which represent vision,
cognition and motor action. Knowledge is represgrae productions and expressed
as PDL (Procedure Definition Language) statemertigs allows defining tasks that
have been abstracted from a domain by the expetémefficiently, but does not
offer problem solving capabilities. APEX has beesedito implement an air-traffic
control simulation.

The GOMS paradigm (forGoals, Operators, Methods, and Selection rulasd
the MHP (Model Human Processonvhich have originally been developed by Card,
Moran and Newell (1983), have sparked a whole faofilarchitectures. Like in Soar,
all action in GOMS is goal oriented. Elementaryiatt are calledperators which
are organized intmethodsOperators are associated to sensor and motoestsnor
they may call other methods, which establishes gadis: the result is a goal
hierarchy. If multiple methods are available toiagh a goal, the conflict is resolved
by resorting teselection rules

GOMS has subsequently been incorporated @agnitive Complexity Theory
(CCT) (Kiras and Polson 1985). CCT provides the theécaktfoundation of the
GOMS analysis tooNGOMSL (Natural GOMS Language)

The goal of EPIC (Executive Process/Interactive ConirdKieras and Meyer
1995) comprises the provision of access to therenment for cognitive models;
EPIC provides a model of perceptual and psychommtocesses—what it considers
to be the periphery of cognition. Originally basewd the Model Human Processor
(Card, Moran, Newell 1983), EPIC consists of mugdtimterconnected processors—
rule-based units—that work in parallel. These pssoes are under the control of a
central executive. EPIC does not provide cognitigarning or problem solving
capabilities, but it is well suited for the intetiom with other models that do, such as
Soar and ACT-R.
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One of EPIC's extensions iSLEAN (Kieras 1999), which may incorporate
GOMS descriptions of tasks.

EPAM (ElementaryPerceiverand Memoriser) is a classic model for a broad range
of memory processing tasks (Gobet, Richman, Staskdeand Simon 1997). EPAM
focuses on the relationship between concept foomatind (high level) perception,
using a discrimination network. Memory in the EPAdels is made up ahunks
meaningful groups of basic elements. The chunksaaesciated to nodes that are
linked into a network, where links represent theuheof tests that have been applied
to objects during perception. If it is possiblentatch chunks with perceptual content,
the resolution of the chunk is increased (famifiation) by adding more details to it;
if the most similar chunk mismatches, then a nedenis added and linked, based on
the mismatched feature (discrimination). EPAM hasrbused to model a number of
psychological regularities of human subjects, idoig learning of verbal material
(Feigenbaum and Simon 1984) and expertise in nungsecessing (Richman,
Staszewski and Simon 1995).

A more recent offspring of EPAM iI€EHREST(Chunk Hierarchy and REtrieval
Structure$, an architecture that has been extensively usemhddel the cognitive
processing of chess players (de Groot and Gobd; 198bet and Simon 2000).

The Human Operator Simulator (HO$)Vherry 1976; Glenn, Schwartz and Ross
1992) integrates a task network with micro motoillsk cognitive and sensory
components that can simulate human performance wsieg computer displays (for
instance in air-traffic controltasks). HOS is baseda network of discrete subtasks
(Siegel and Wolf 1962; 1969).

HOS has been partially incorporated into the sitiatool MicroSAINT (Micro
Systems Analysis of Integrated Network of Tjafkaughery and Corker 1997) and
COGNET (COGnition as a NETwork of tagk¢§Zachary, Ryder and Hicinbotham
1998), another member of the GOMS family. COGNE®#tdees a model of the
execution of multiple tasks in parallel, using dtemtion switching mechanism, and
has been applied to demonstrate vehicle trackifigbritsky and Zachary 1989) and
to model air traffic control (Seamster et al. 1993)

2.2.3 Alternatives to symbolic systems: Distributed architectures

Many of the approaches discussed in the previoasosemay be called “semi-
classical” architectures. They are not restrictedliscrete representations, but make
use of Bayesian reasoning, fuzzy logic and sprepdictivation networks, some
cognitive architectures, like ACT-RN, C-Il, Clari¢8un 2003) andAMPLE(Hanson

et al. 2002) integrate neural networks. These nusthend to increase the power and
flexibility of the systems, while often still allang for manually engineered
knowledge units and easy understanding (by therarpater) of the content that has
been acquired by learning or perception. For mbshese models, production rules
are the central instrument of representation.

Despite the benefits of symbolic architectures it semi-symbolic extensions,
there are some criticisms. Symbolic cognitive geztiures might be just taweatto
depict what they are meant to model, their simpid atraightforward formalisms
might not be suited to capture the scruffiness oéa-world environment and real-
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world problem solving. For example, while the déter representations of Soar and
ACT are well suited to describe objects and cogaitalgorithms for mental
arithmetics, they might run into difficulties whebject hierarchies are ambiguous
and circular, perceptual data is noisy, goals atenell-defined, categories are vague
and so on. In domains where the extraction of blgtaules is practically infeasible,
neural learning methods and distributed representinay be the method of choice,
and while this is often reflected in the perceptaatl motor modules of symbolic
architectures, is is not always clear if their &gtlon should end there.

The “neat and scruffy” distinction has been destdiby Robert Abelson (1981),
according to whom it goes back to Roger Schanélldtles to two different families
of Al models: those favoring clean, orderly struesiwith nicely provable properties,
and those that let the ghosts of fuzziness, digeiness, recurrency out of their
respective bottles. While the term “New Al” is sdinees used to refer to fuzzinéss
Al does not really consist of an “old”, neat phaaed a “new”, scruffy era. Even in
the 1960s and 1970s, people where designing logged systems and theorem
provers (for instance McCarthy and Hayes 1969; ddits 1971), and at the same
time, others argued for their inadequacy (for insta Minsky and Papert 1967),
suggesting less general-purpose approaches angs¢hef distributed systems with
specific functionality instead.

In cognitive modeling, there has been a similaiddi\between rule-based systems
with clean organizational principles (like Soar aA€CT-R) on the one hand,
philosophically close to Fodor and Pylyshyn (19&8) Jackendoff (2002), and
distributed parallel processing architectures (Rbaré and McClelland 1986) on the
other. It has often been argued since that it ionty possible to bridge this gap, but
also necessary to integrate both views into systdrat can be both localist and
distributed at the same time (see Dyer 1990, amd 1993). The resulting systems,
however, will probably not be neat and scruffytet same time. While they will be
able to emulate neatness to some degree, thepavilhherently even scruffier! And
maybe that is a good thing, since real world pnuisieare usually characterized by
scruffiness as well: knowledge tends to be incotepleapproximate and
contradictory, outcomes of events tend to be uagersituations are often far from
being clean-cut. Thus, a system accumulating kmgde from a real-world
environment needs to pack scruffy representatioms @oblem solving approaches
under its hood, although it might present a nedtsa.

The design of a cognitive architecture based onnkkurules and modules
amounts to a search for the minimal orthogonal ireqents of human-like
intelligence by carefully and incrementally addoamplexity. When nature came up
with designs for our brains, it had perhaps chdkeropposite path: it defined a large
set of highly interconnected elements and extremherent complexity, and added
just enough global organizational principles andaloconstraints (along with a

87 New Alas opposed tGood Old-fashioned Ahas been used to characterize lots of things: a
departure from symbolic methods and an embraceatsgmbolic computation, the inclusion
of sociality, the use of grounded representatianspng many others. Still, most of the ideas
that are now subsumed under “New Al” have been fitatad in the early days of Al, although
neglected in practical research.
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developmental order) to ensure that the behavighefsystem would be narrowed
down to produce the feats of cognition when corteednwith the right kind of
environment. (The environment might be crucial,sase the individual genesis of
cognitive capabilities depends on the adaptatiostitouli and tasks as they present
themselves to an organism—a notion that has be&ed/dn the situated cognition
theory by Suchman, 1987 and Clancey, 1994). Theseoaf the researcher might
thus consist in the identification of those orgatizmal principles and constraints, for
instance by experimenting with distributed procegsarchitectures that have been
connected to the right kind of environment. It mag that the mind is best not
understood as a certain assembly of functionalitit, as an emergent product of a
homeostatic system with a defining set of orgarenai constraints. The complexity
and parsimony of cognitive functions might be tasult of the activity of this system
and the application of the constraints, a modethaf mind would not consist of
hundreds of perceptual subsystems, dozens of metgpes and representational
formats and a very large number of algorithms dpiegj cognitive behavior, such as
problem solving, spatial cognition, language corhprision and memory
maintenance. Instead, a minimal description ofntired would be a description of the
principles that give rise to it; its story would tdd in terms of a set of several classes
of homogenous neural circuits, the principles dbswy the global arrangement of
clusters of such elements, and a rough layout ofat@athways that define the initial
connectivity of the system. Dreyfus and Dreyfus éhaaummarized the conflict
between the two modeling approachedné faction saw computers as a system for
manipulating mental symbols; the other, as a medammodeling the braih(1988).

Methodologically, this latter view suggests to deégeom the specification of
formalisms that literally treat cognitive tasks sesmething to be addressed with
description languages and well-defined functors dp@rate on the descriptions along
pathways plastered with carefully proven propertiesuggests to abandon neatness
on the level of description of cognitive functiogirand instead concentrate on
specifying principles of neural, distributed cogmit

Having said that, | think that the state of curreletvelopment of distributed
architectures does not seem to make the symbolizoaphes obsolete. While
numerous successful models of cognitive functioriiage been realized, they usually
address isolated capabilities, such as sensoryegsom, memory or motor activity.
To my knowledge, distributed processing architexsudo not cover the breadth of
capabilities addressed by the unified architectwesymbolic and semi-symbolic
origin yet. While it may be theoretically possitie simulate symbolic processing
with a connectionist model, perhaps it is not peatly possible to do so (Anderson et
al. 2004).

While the connectionist movement in cognitive mauelhas started out in the mid
1980s with John McClelland’s and Paul Rumelhartgppsal of parallel distributed
architectures (Rumelhart and McClelland 1986),attempts to model the breadth of
cognition using neural nets are few and limited.

ART (Adaptive Resonance Thgdrby Stephen Grossberg (1976) is one of the
earlier attempts to realize a broad model of cagmigntirely with a neural net design.
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Like many of these approaches, it is not reallyndied architecture, but a family of
models (Krafft 2002). ART includes working memopgrception, recognition, recall,
attention mechanisms and reinforcement learningl ARs been introduced in 1976,
and development has continued at Boston University.

One of the main contributions of ART consists in $blutions to the stability-
plasticity problem posed by artificial neural netk& if such a network changes its
weights continuously to reflect newly acquired khedge, it may lose previous
knowledge; if it does not, it has difficulty to gitado new situations. ART proposes
two layers of networks that make up its working reyn an input level (bottom),
which responds to changing features and objectstlieasystem directs its attention
to, and an output level (top) that holds categbticawledge related to the concepts
in the input level. The directed links that estsiblthe connection between the two
layers are modulated by a long-term memory (whicimade up by the link weights
between elements); short-term memory consistsantbmentary activations moving
through the system. With this arrangement, ART &tes a bottom-up/top-down
model of perception: The top-down processes defihat the input level is looking
for by modulating its attention. Irrelevant stimdre ignored while mismatches
trigger the attention of the system. The matcheasden bottom-up and top-down
systems create a reciprocal feedback. Two subsgstene governing attention, one
providing orientation, control the activity. Thaeaitional subsystem consists of gain
controls that match the bottom-up activation withp-tliown expectations; the
orientation subsystem watches out for mismatctiésdiscovers a new situation (i.e.
something not covered by the expectations), igefg the orientation behavior that
attempts to find a more appropriate recognitionecod

Learning in ART is facilitated by adjusting frequlynactivated links—those that
are part of the resonance between the layers.

ART has been applied in simulating illusions inudkperception, modeling visual
object recognition, auditory source idenficatiord ghe recognition of variable-rate
speech (Grossberg 1999), but does not capture quadetasks, such as continuous
persistent behaviors or motor control.

To overcome the difficulties with expressing pragioral knowledge in a neural
architecture, severatonnectionist production systemsave been designed (see
Touretzky and Hinton 1988, Dolan and Smolensky 198Aowledge based artificial
neural network§KBANN) have been suggested by Towell and ShadlBo@, 1994),
which transform sets of clauses of first order ¢ogito simple feed-forward networks
that map truth values to activation states andbeamodified using backpropagation
learning, thus allowing to model noisy and hetermyes data starting from
incomplete and possibly contradictory rule-basestdptions.

Various models have been developed to model theildited representation of
discrete content, for instanc&parse Holographic MemoryKanerva 1994);
Holographic Reduced RepresentatioldRRs; Plate 1991) and tensor product
representations (Smolensky 1990). The latter haeenbextended into the ICS
architecture (Smolensky and Legendre 2005), whichased on Optimality theory
and Harmonic Grammars (Prince and Smolensky 19997,12004). Representations
in ICS are organized by synchronized oscillatiavisich provide binding between so-
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called “roles” (categories) and “fillers” (the diduted content of the concepts) and
can be determined using a tensor product. Withi®, liCis possible to express sets,
strings and frames, as well as categorial hierascfusing recursive role-vectors).

A perceptual model by Wyss, Koénig and Verschuréd@@xplains the genesis of
place cellsin the perceptual cortical areas of rats. Accaydio their model,
abstractions like places and objects are repres@mathat result from the encoding
of low-level stimuli so that their entropy is re@uc Using just sparseness and
stability as organizational principles of neuraémaknts, they could replicate the
experimental findings on place cells in computgreziments.

Recent research in neural modeling also addreas&sperformance in problem
solving in a biologically plausible manner. Usitng Neural Engineering Framework
(NEF) (Eliasmith and Anderson 2003), the behavior afnhns in the Wason Four-
Card Experiment (Wason 1966) could be replicatédgua large scale simulation of
spiking neurons (Eliasmith 2005). Still, such mad&cus on the replication of an
isolated task and are not yet a paradigm for thegmtion of problem solving,
perception, reasoning, planning and reflection obgnitive system in the face of its
environment.

2.2.4  Agent Architectures

The previously discussed architectures have in comrthat, while modeling
problem-solving, learning, sometimes perception amen action, they do not deal
with motivation. Usually, the model is depicted assystem that receives input,
processes it according to an organizational prlacipr a pre-defined goal and
generates an output, as opposed to an autonombitysegnbedded in an environment
that it may influence and change according to #®ds. Such a paradigm, the
autonomous agentwas introduced in Artificial Intelligence in th&980s. “An
autonomous agent is a system situated within amtdgfaan environment that senses
that environment and acts on it, over time, in pitrsf its own agenda and so as to
effect what it senses in the futuréFranklin and Graesser 1996)
There is no narrow universal agreement on what makeagent; rather, agents are
a broad stance, an attitude taken towards the mesid interpretation of a system.
Central to this notion are the ideas of
- situatedness-an agent exists within an environment to whicts itonnected
via sensors and actuators; usually the agelucalizedin that environment,
i.e. occupies a certain position in time and spadech makes only a subset
of stimuli and actions affordable at a time
- persistence-both the agent and the environment have a prokchgu
existence, so that perception and action may haeffact on future events
- adaptivity—the agent changes its responses in accord to iivpatceives, it
might take action to improve its environment arartehow to cope with it
- proactivity—the system acts on its own behalf, i.e. it hasrmdlized goals or
behavior tendencies instead of being fully contblby a user.
None of these requirements is strict, however;mftee agent paradigm is just an
engineering metaphor that may apply very looselg &oftware system. Sometimes,
the term agent is used for any software systemabtst on behalf of a human user.
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While the agency concept that is used in computéense does not put any
restrictions on cognitive capabilities or behawibra system, it has been nonetheless
very influential for the design of models of intgénce and cognitioff

The demands posed to an agent depend mainly oeniigonment. Agent
environments may put restrictions on observabilitey might be completely or only
partially observable), accessability (actions mayuliformly applicable, or only at
certain locations), static or dynamic. The paransetd the environment may change
continuously or in discrete steps, and sequencesvehts may be deterministic,
stochastic or follow strategies. Also, the actiaighe agent may leave permanent
traces, or different instances of interactions rbayindependent from each other
(episodic). Environments may also contain othemg&genulti-agent system@vAS)
allow (or force) several systems to interact.

Belief-Desire-Intention(BDI) systems are not as much a model of humamitiog
but an engineering stance and a terminological émmonk. When designing an
autonomous agent, the need arises to equip itseithe data structure that represents
the state of its environment. These pieces of kadgé are usually acquired by some
perceptual mechanism or inferred from previous estatand so they might
misrepresent the environment; they are calediefs (Rao and Georgeff, 1995,
characterize beliefs as something that providesrinétion about the state of the
system.)

Furthermore, the agent will need to have informatbout preferences among the
states it can achieve to define objectives. Thégectves are very much like goals in
the rule-based systems, but they might contradécth eother, and be subject to
constant changes. The objectives are calledires and define a motivational
component. Eventually, the agent will have to mckobjective and commit itself to
following it with some persistence; otherwise, therould be a need for continuous
re-planning and reconsideration of all possiblersesi of action, which is usually not
possible in a dynamic and complex domain. Thesentitmrents are callehtentions

BDI agents undergo a typical cycle: they have todha events, execute plans and
update their mental structures; there are manyillessiays to integrate deliberative
processes (Dastani, Dignum and Meyer 2003), fotaim®, Michael Wooldridge
suggests different cycles for “single-minded”, “opminded” and “blindly
committed” agents (Wooldridge 2000).

The BDI paradigm has led to task specific contrahguages and agent
architectures (Ingrand, Chatila, Alami and Rob&9@; Ingrand, Georgeff and Rao
1992; Kinny and Phillip 2004; Brazier, Dunin-KegicTreur and Verbrugge 1999),

88 The transition from monolithic programs to ageistsalso evident in implementations of
Dérner’s Psi architecture. Earlier implementatidike EmoRegul (Hille 1997) did not interact
with an independent, persistent environment, butiatream of events that they learned to
predict. The Psi Island implementation (Dorner 20@2tures an agent that explores, changes
and revisits locations in a dynamic environment.r@urimplementations (Dorner and Gerdes
2005) provide a multi-agent environment, where sdv@si systems act upon the environment
and each other; they might also communicate to an@& representations that they have
acquired through their exploration.
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but most of them do not comprise models of humke-tiognition (an exception is
the current JACK system: Busetta et al. 1396wden et al. 2001).

Behind BDI architectures stands the philosophicduanption (Bratman 1987)
that knowledge of a system concerning the worldigfs), desires and intentions
(selected goals) are indeed states of this systeichveause its behavior, and are thus
represented explicitly. A weaker view contends thaly beliefs are necessarily to be
represented explicitly (Rao and Georgeff 1995), levldesires may be related to
events and intentions could be captured implidighyplans.

The philosophical position ofnstrumentalismmaintains that notions such as
beliefs and desires are merely ascribed to theesy$ly its observers; even though
these ascriptions are useful, they are fictitiochscompromise between these realist
and instrumentalist views is suggested by Denid€&®1): while beliefs, desires and
so on can only be detected by an observer usingntentional stance, they are
nevertheless objective phenomena, which are abstiacsing the stance from the
patterns that determine the object of descripfidre question whether an architecture
should strive to introduce functional descriptiasfsbeliefs, desires and intentions
remains unanswered by this. The particular staitehis controversy do have an
influence on how particular agent architecturesdmsgned.

The classical example for agents without symbodipresentations is Rodney
Brooks’ subsumption architecturéBrooks 1986). A subsumption agent is a layered
collection of finite state machines that may bermmted to sensors, actuators or other
state machines. Simple behaviors may be implemebyethe interaction of state
machines on a low level, and more complex behadoeshe result of the mediation
of low level behavior by elements on a higher le&lbsumption agents do not have
a world model and no capabilities for deliberatm®cessing. There is no central
control (although Brooks later introduced a “hormbactivation” that provides a
mode of distributed control of all state machinkatthave a “receptor” for the
respective “hormone” (Brooks 1991)). While the suhption architecture may
produce complex behavior, adaptation to new probl@msed by the environment
requires re-wiring; reactions of the agents arey ¥ast, but mainly reflexive. (The
subsumption architecture has later been extendedtrimduce landmark detection,
map building group learning (Mataric 1992) and plag (Gatt 1992). The work on
non-symbolic architectures continues, see for imgaBredenfeld et al. (2000), but it
has yet to be shown that cognitive behavior carelpgted using a purely non-
symbolic system.

Are Al architectures different from cognitive artgdtures? This argument has been
made (Ritter et al. 2002, p. 43), but of coursés mot stricly true. Even though the
project of capturing and understanding intelligeseems to have migrated from its
traditional realms in Al into Cognitive Scienceeth are numerous efforts within Al
research that focus on cognitive capabilities.

The combination of the agent viewpoint with cogrétiarchitectures and research
in computer models of emotion has also sparked mm&arch on cognitive models
that integrate emotion and cognition.
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2.2.4.1 The Cognition and Affect Architecture—the ¢ ase for cognitive
eclecticism
The Cognition and Affect Project (CogAff, Slomarhr@ley and Scheutz 2005, see
also CogAff homepage) is not an implementation, butoncept for cognitive
architectures in general. It provides a framewartt a terminology to discuss existing
architectures and define the demands of broad rmagfetognition. CogAff is not
restricted to descriptions of human cognition—tisisegarded as a special case (H-
CogAff).

CogAff started in 1981 (Sloman and Croucher 1981 avas ten years later
turned into a research group. In 1994, the SimAgmuikit (Sloman and Logan 1999)
for CogAff agents was introduced. SimAgent is based?oplog, an Al environment
that integrates Pop-11, Common LISP, Prolog anddatial ML.
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Figure 2.6: H-CogAff schema (adopted from Sloman jstéy and Scheutz 2005)

Aaron Sloman introduces CogAff along two dimensjodsfined by the layers of
cognition—reactive, deliberative and meta-delibgeat-and the stages (columns) of
processingperception central processingandaction (Sloman, Chrisley and Scheutz
2005).

These dimensions are interleaved, so there isivegoerception, reactive control
and reactive action, deliberative perception, déeliive control, deliberative action
and so on. Information is exchanged within and betwthe layers.

The reactive layercorresponds roughly to what has been modeled ool&’
subsumption architecture—a reflexive, entirely syibolic system. The behaviors
in this layer are fast and may be complex and ae#ipted to the system’s
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environment, but only at the cost of excessive agfer requirements, or due to
evolutionary re-wiring. The reactive layer does relly much on memory and does
not need a word model, i.e. it may act directlytlom situatiorf®

The deliberative layelis a more recent product of evolution and alloars“ivhat
if” reasoning, enabling anticipation and plannifitne deliberative layer requires an
explicit world model, compositional representatidifier planning) and associative
storage for learned generalizations that are agiplcin future contexts. When the
reactive layer can not handle a problem posed byetivironment on its own, it
presents it to the deliberative layer. Becauséeflimited parallelism of deliberative
processing, only few of these problems can be leanat once; this can be regulated
by a variable attention threshold. Perturbances mesylt from attempts of the
reactive layer to divert attention from the currdetiberations.

The meta-management layenonitors the activity of the other layers to el
and control the deployment of strategies. It presidelf-reflection and control of
thought processes by sending information to thermat there is no complete
subsumption, all layers are to some degree autonsrand merely coordinate their
activity with each other.

Corresponding to the layers, there are specialaet! differentiated perceptual and
motor functions. Sensory equipment on the readéiyer has to be sensitive to details
and quickly available features of the environmetd( internal processes), whereas
perception on the deliberative layers makes usabstractions over these details.
Motor responses in the reactive system may beafabdirect reactions to input, while

the actions incorporated in the deliberative lagan be more complex, involve

decision-making and may require adaptation to &misituation before they can be
executed.

In addition to the normal information flow in thayers, there is a system that
monitors the external and internal environment tfa agent for events (especially
dangers) that require immediate attention of allelg; this is called the ‘alarm
system’.

Sloman also addresses the role and functionalitgnodtions. Emotion in Sloman’s
framework is not an isolated parameter, but a @®tkeat stems from the information
processing of the system. Each level of procesgeldgs different emotions:

- Primary emotionsstem from reactive processes and correspond toitjue
behavior tendencies, such as freezing, fleeinditiig and mating. Sloman labels
them ‘proto-emotional’; they do not contribute hm$e processes which play a role in
self-awareness.

89 n biological systems, there is evidence that de@nlevel behavior, for instance in insects,
is rarely completely state-less, i.e. does reqeome kind and amount of memory. Also,
reactive behavior, such as walking, may be mediayed dynamic and detailed proprioceptive
memory, which is updated according to simulated eneants instead of sense-data to make the
feedback from action to perception more responsigase-data will be used afterwards to tune
the simulation (Blakemore, Wolpert and Frith 2000).
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- Secondary emotiongsult from deliberative processes, they mightespond to
past events, fictitious or anticipated situatioBgamples are apprehension and hope.
They can also be the product of conflicts betwdsn deliberative layer and the
reactive layer (for instance, if planning is intgyted by a primary emotion); Sloman
calls these conflicts ‘perturbances’.

- Tertiary emotionsare higher order concepts like adoration and hatigh; they
are rooted in reflections on the deliberative psses. Like secondary emotions,
tertiary emotions can be the product of perturbancaused by interruptions and
diversions from other layers.

Some emotions are caused specifically by the atystem, i.e. if an event in the
environment or in the internal processing of theragequires an instant reaction, this
re-configuration corresponds to specific emotidike (startling).

Sloman’s model is entirely qualitative, largely splative, and most details remain
undefined. A partial implementation of a CogAff agealledMinder was the result
of a PhD thesis by Wright (1997). Sloman’s ideasehdeen influential in the
discussion and development of other, more detailedels of cognition and emotion.
In order to model cognition, Sloman asks us to adap methodology to the task, not
the other way around, that is, we should not atteimmlesign our architectures just
along the methods of a single field:

- Instead of concentrating on language, vision omiea, we should strive for
complete architectures, because these facultieigindy interdependent and
it will probably not be possible to understand thiarisolation.

- We should look at different species. Cognition & a feat that suddenly
cropped up in humans; rather, human cognitionspexial case that might be
better understood when regarding the capabilitiegher species as well.

- Individual differences should not be disregardede-¢bgnitive strategies and
functions for instance of children, people with ibralesions or
mathematicians are sometimes quite different, anderstanding these
differences may be crucial for understanding thedmi

- While most architectures in psychology strive t@sely mimic human
performance for given tasks, there is no reason imtslligence should be
restricted to human-like systems. The study anceldgwment of artificial
systems may lead to new insights into the natuemghition as well.

- Let us take a constructionist stance, by lookinthatdesign requirements (i.e.
the tasks posed by a complex environment, socitdrantion, mental
development etc.) that cognition answers.

- There are many different possibilities for the dasof systems that achieve
cognitive feats—these possibilities should be erqdobeyond the obvious,
because the routes that lead to a given resutiaralways clear.

- Alot can be learned by looking at the requiremeamts design principles that
are imposed by the evolution of a species and #weldpment of the
capabilities of an individual. Intelligence, ematjamotivation and sociality
are the answer to particular evolutionary requineimieBoth evolution and
individual development require the incremental gesdf a system, so the
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study of the particular possible paths that leathéocognitive capabilities of
a system might be necessary for their understanding

- Individual scientific disciplines tend to divergep to the point where their
methodologies are mutually incompatible. We shatdchbine the different
disciplines of Cognitive Science, including philpby, and switch often
between their methodologies.

One notable example of an Al architecture thatreete Aaron Sloman’s work is
CMattie (Franklin 2000). CMattie has been designed toenaitd answer e-mails to
organize and announce invited talks and seminaesa Branklin proposes a very
eclectic system that combines a collection of snvadlependent problem solving
modules, calleccodeletsand organized in aode rackwith a Sparse Holographic
Memory (Kanerva 1988), attention management meshaniand &lipnet Codelets
are based on SelfridgeRandemonium theorfSelfridge 1958) which suggests that
mental activity is brought forth by the performancté a number of differently
specialized autonomous agent structurésmony which compete for resources.
Depending on successes and failures of the systetmhme given (and changing)
context, the demons become associated with the fasged to the system and each
other0 Slipnets (Hofstadter and Mitchell 1994) allow awatal reasoning and
metaphor finding by organizing knowledge into hiehdes according to the available
operators that allow transition between knowleddates, and then allowing
“slippages” on the individual levels. CMattie alsomprises a model of emotion that
affects stored knowledge, but here, emotions domautify the retrieval. Instead, they
mainly act as additional properties of retrievedaapts and help to determine context
and relevance. Franklin’s architecture representgoimg work; the current
instantiation is called LIDA (Ramamurthy, BaarsM#llo and Franklin 2006).

Another, relatively unknown model of human probleatving is John Andreae’s
PurrPuss(Andreae 1998). Based on an associative memonyPBss represents an
agent in a highly abstract toy world, such as ahsimplified chess problem. To
explore the space of the problem, PurrPuss usegtigational system that is based on
novelty searchiand works very much like Dérner’s urge fancertainty reduction
novelty is in fact inverted certainty), its mainleoconsists in avoiding repetitive
behavior and finding well-structured representatiokdditionally, the behavior of the
agent can be guided by the experimenter usifidjiatory signals (“smiles” and
“frowns”).

2.2.4.2 The Clarion Architecture

Clarion (Sun 2005, 2003, 2002, 2004a, 2004b) stand<Cfmmnectionist Learning
with Adoptive Rule Indication On-Linét is a unified cognitive architecture that
defines an agent and includes a detailed theomativation that is based on a set of
drives.

% The Pandemonium theory is also used in the cagniichitecture COGNET (Zachary,
Ryder and Hicinbotham 1998).
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Clarion’s representational structures hark back Ron Sun’'s work on
CONSYDERR(1993) that models categorical inheritance usingwa-layered
connectionist system, whereby one layer is disteithuthe other localist. Memory in
Clarion likewise consists of a localist, rule-bassger that encodes explicit, symbolic
knowledge, and an underlying distributed layer wiitmplicit, sub-symbolic
representations. A rule in Clarion connects a diomi encoded as a chunk, with an
action, encoded as another chunk. Chunks are tiolscof dimension-value pairs
(here, a dimension refers to an aspect of a conttépta slot within the chunk), they
bundle a set of nodes in the distributed layer.oAdition matches if the nodes that
are connected to the condition chunk become aetivaithin the sub-symbolic layer,
for instance by a perceptual stimulus that is tmatied through other, associated
nodes. Likewise, an action corresponds to the aiitim of the nodes that are
connected to the action chunk of a rule.
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Figure 2.7: Overview of the Clarion architecfrésee Sun 2003)

Cognition in Clarion is mainly subject to the adijvof two sub-systems, called for
lack of better names thAction Centered Sub-systefACS) and theNon-Action
Centered Sub-systeniNACS). Both store information using the two-lager
architecture, i.e. there is an explicit and an iniplevel of representations in each of

91 |n the published literature, Clarion is depictedaasymmetric arrangement of four square
boxes. To simplify the understanding of the conftolv and emphasize the central role of
meta-cognition, the position of the sub-systemshieen re-arranged here. The position of the
boxes does not imply subsumption.
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the two sub-systems. The working memory, actinteagporary storage for decision
making, is a part of the ACS, which also maintdhes active behavior strategies. To
hold general knowledge, the NACS provides a semamtemory. An episodic
memory (a protocol of past events) and an asseeiatbject memory are both
included in the NACS.

There are two additional modules: thiotivational Sub-systerfMS) holds the
goals and the drives, thdeta-Cognitive Sub-syste(MCS) coordinates the activity
of all the other sub-systems.Several ways leadaming:

- The symbolic layer may be organized by backpropagatsing Q-learning
(Watkins 1989). The reinforcemer (valug is based on the satisfaction of
Clarion’s goals and drivé€sand determined by the MCS.

- Rules may be translated into the sub-symbolic laykrs corresponds to the
top-down assimilation of routinized explicit knowlge into a reflexive skill.

- Rules may be extracted from the sub-symbolic layérich might afford
generalization (i.e. the opportunity to apply tleyiously implicit knowledge
in different contexts).

- Rules may be modifiedithin the symbolic layer.

In the NACS, learning works either by rule-extrantior by direct rule adoption

(in this case, rules are taken from the environraantpresented via the ACS).

The MS holds goals that are instantiated by the M&Satisfy the drives of the
system. Clarion does not only offer a goal stack,dombines the stack with a list,
because a stack restricts the order in which dgual®e to be achieved, which is only
realistic for non-concurrent sub-goals.

Drives are either innate (hard-wired) or acquired! dall in three categories,
which form a hierarchy (i.e. an order of prefergnce

- Low-level primary drivegTyrell 1993) include physiological needs, such as
food and the avoidance of danger.

- High-level primary drives(Maslow 1987; Sun 2003) are based on more
abstract needs, which require cognitive assessmeftsituations to be
actualized. Examples of high-level primary drives the need for belonging,
for self-actualization and self-esteéfn.

- Secondary driveare derived drives and stem from learning and itiomihg.

The action control system of Clarion is designeduttill the following conditions
(Simon 1967; Tyrell 1993; see also Sloman 2000):

- Proportional Activation: the strength of the driwhould correspond to the
activity of the system in fulfilling it.

- Opportunism: When confronted with an opportuniysatisfy a drive, the agent
should take it.

92 This is the same principle as in Dérner’s Psi iecture: There, the reinforcement value is
called pleasure signal and corresponds to the ehamthe discrepancy between target value
and current value in the demands of the agent @899, pp. 47).

93 The high-level drives suggested Sun’s model sholover degree of parsimony, when
compared with Dérner's model, i.e. the Psi thearggests a smaller set of drives to achieve
the same behavioral dimensionality.
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- Continguity of actions: Behavior should not olsdé, but follow persistent plans.

- Persistence: To maximize the intervals in whibh satisfaction of a need is
required, the agent does not stop at a minimasfaation. It should satisfy drives
maximally when given the opportunity.

- Interruptions: The agent should interrupt itS\atst when necessary.

- Combination of preferences: The agent should sa@mals in such a way as to
satisfy as many drives as possible in the coursts aftions.

The reinforcement that results from the satisfactié the drives is measured by
the meta-cognitive sub-system and used as a lepreignal. The MCS also
establishes goals depending on the drives. Alsocéimmunication between the other
modules is filtered and regulated by the MCS, d@rabntrols the modes of learning
between the explicit and implicit representatidagers.

Clarion is a relatively recent development and stildergoes frequent changes. Its
authors do not refer to Dorner's Psi architectiihey are probably not aware of its
existence) but the similarities are quite striking:

- There is a close correspondence between the ufgasPsi agent and the
drives of a Clarion agent. The low level ‘physidtal’ drives are even
identical.

- Both systems suggest a motivational componentdbtgrmines a goal. (In
the Psi theory, goals are represented as demaistisat situations
associated with information on how to reach thent, there is no explicit
stack or list structure as in Clarion).

- Goals are used to filter incoming information amahtcibute to the regulation
of the processing of different cognitive mechanis@antextual priming and
modulation of cognitive processing based on denséaies are central to both
models.

- Both systems acknowledge the need to combine syenbod sub-symbolic
representations and suggest solutions (in Clatieimg two-layered memory
mechanisms, while Psi proposes a single, hybridesgmtation). Psi and
Clarion are neurosymbolic architectures.

- Learning is facilitated by reinforcements based the satisfaction or
frustration of demands, by neural learning, andubg-based abstractions.

While implementation details and the model focdfedi Clarion and Psi both attempt
to model the breadth of human cognition in an aestmanner and show a surprising
degree of convergence.

This short assessment of the field of cognitivehiaectures is very far from being
complete, but it should serve well to identify tbentext that Dorner’s architecture
has grown into, and we may now attempt to pinpsimine of the similarities to
existing systems, discuss shortcomings and highbgéas in which the Psi theory
seems to be unique.
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2.3 The Psitheory as a model of human cognition

What springs to the eye when glancing at the Psorih are three aspects: its
impressive breadth, its methodological heteroggraeit eclecticism (up to a point at
which some might accuse it of grave ignorance), aledpite its independent and
relatively isolated development history, its simithato various individual advances in
very different disciplines of Cognitive Science.

Of twenty-two major areas of cognitive functioningcently defined in a DARPA
proposal for cognitive architectures (DARPA 200Bjjrner’s Psi theory addresses
fourteen (memory, learning, executive processesiguage, sociality/emotion,
consciousness, knowledge representation, logiogn#ag, elementary vision, object
perception, spatial perception, spatial cogniticatfentional mechanisms and
motivation), ten of them in considerable detailh€TPsi theory currently does not
discuss the areas of somato-sensation, olfactiostation, audition, proprioception,
vestibular function and polysensory integrationd énsays relatively little about the
individual domains of creativity.) Among the 147 bsiopics identified in the
proposal, the Psi theory offers a discussion an@att partial implementation as a
computer model of 68 (see appendix of this seckiwran overview), which might
very well be unparalleled in the field of cognitigechitectures. While many of these
elements have only found a very shallow represemtaespecially the Psi theory’s
contribution to a possible understanding of emotiand motivation is quite
substantial and goes beyond what other cognitivdatsothat | am aware of have to
offer, and it is one of the few computational medef emotion that have been
validated against results from human subjects itomplex problem solving task
(Ritter et al. 2002, p. 37).

Methodologically, the Psi theory marks a convergeat philosophy, theoretical
psychology, Artificial Intelligence, artificial l& and cognitive modeling, which
means that it is difficult to compare to other citige models as such, but of course it
is possible to match the individual areas coverethé Psi theory against work in the
respective disciplines. (While the author lacks tmenpetence to criticize the Psi
theory adequately from the different disciplinariewpoints, this work mainly
attempts to present the theory in such a way thetn be understood by practitioners
of all these fields.)

2.3.1 Main assumptions

While the publications concerning the Psi theoryni give an explicit list of its
theoretical assumptions, | believe that its corghinbe summarized in the following
statements:

1. Homeostasisit is fruitful to describe a cognitive system asstructure
consisting of relationships and dependencies thdesigned to maintain a
homeostatic balance in the face of a dynamic enwient.

2. Explicit symbolic representations
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The Psi theory suggestsierarchical networks of nodess a
universalmode of representation for declarative, procedamdl tacit
knowledge: representations in Psi agentsatgosymbolic

These nodes may encoldealist and distributedepresentations.
The activity of the system is modeled usimgodulated and
directional spreading of activation within these networks.

Plans, episodes, situations and objects are descwith a semantic
network formalism that relies on a fixed numbepoé-defined link
types, which especially encodeausal/sequential orderingand
partonomic hierarchiegthe theory specifies four basic link-types).
There are special nodes (representing neural t3jcthiat control the
spread of activation and the forming of temporarypermanent
associationand theirdissociations

3.  Memory

a.
b.

The Psi theory posits a world modsitgation imag

The current situation image is extrapolated intobanching
expectation horizon(consisting of anticipated developments and
active plans).

Working memory also contains amer screena hypothetical world
model that is used for comparisons during recogmjtiand for
planning.

The situation image is gradually transferred imcepisodic memory
(protoco).

By selectivedecay and reinforcement portions of this long-term
memory provideautomated behavioral routingegnd elements for
plans(procedural memory).

The fundamental atomic element of plans and behadquences is
a triplet of a (partial, hierarchical) situation descriptidorming a
condition, an operator (a hierarchical action dpsion) and an
expected outcome of the operation as another ghaltierachical)
situation description.

Object descriptiongmainly declarative) are also part of long-term
memory and the product of perceptual processesfiotiance$*
Situations and operators in long-term memory mayabgociated
with motivational relevancewhich is instrumental in retrieval and
reinforcement.

Operations on memory content are subject to emaitrondulation

4. Perception

a.

Perception is based on conceptual hypotheses, wiidtie the
recognition of objects, situations and episoddgpothesis based
perception (‘HyPercept’)s understood as laottom-up(data-driven

94 Here, affordances (Gibson 1977, 1979) refer tdrttegration of perceptual information with
applicable operators within the object descriptions
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d.
5. Urgesl/
a.

b.

and context-dependent) cueing of hypotheses thatddeaved with
abottom-dowrverification.

The acquisition of schematic hierarchical desauipgi and their
gradual adaptation and revision can be describegsimilationand

accommodatioriPiaget 1954).

Hypothesis based perception isigiversal principlethat applies to
visual perception, auditory perception, discourserpretation and
even memory interpretation.

Perception is subject to emotiomabdulation

drive8s:

The activity of the system is directed towards sldisfaction of a
finite setof primary,pre-defined urgeg&drives).

All goals of the system are situations that areoeiased with the
satisfaction of an urge, or situations that aretrimsental in
achieving such a situation (this also includes rabst problem
solving, aesthetics, the maintenance of socialtiogighips and
altruistic behavior).

These urges refleatemandsof the system: a mismatch between a
target value of a demand and the current valueltsegu anurge
signal which is proportional to the deviation, and whiniight give
rise to a motive.

There are three categories of urges:

i. physiological urgeqsuch as food, water, maintenance of
physical integrity), which are relieved by thensumption
of matching resources and increased by the metaboli
processes of the system, or inflicted damage (iit$@g

ii. social urges (affiliation).The demand for affiliation is an
individual variable and adjusted through early epees.
The urge for affiliation needs to be satisfied egular
intervals byexternallegitimacy signalgprovided by other
agents as a signal of acceptance and/or gratdicator
internal legitimacy signalqcreated by the fulfilment of
social norms). It is increased by social frustmati@nti-
legitimacy signals or supplicative signals(demands of
other agents for help, which create both a sufferoy
frustration of the affiliation urge, and a promisg
gratification).

iii. cognitive urgegreduction of uncertaintyandcompetende
Uncertainty reduction is maintained through expiora
and frustrated by mismatches with expectations cand/

9 |n Dérner's terminology, alemandis a“Bedarf’, anurge signalis a“Bediirfnissignal’”.
Urge also be translated witldrive” (“Trieb™) , however, since Ddrner did not USaieb” and
“urge” has been introduced by Masanao Toda (1982) toridesa “Bedurfnissignal”, and
furthermore, Dorner refers to Toda in the formwlatobf his theory, | have choséarge” as
the correct translation.
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failures to create anticipations. Competence ctssidask
specific competence(and can be acquired through
exploration of a task domain) angeneral competence
(which measures the ability to fulfill the demands
general). The urge for competence is frustratecadtyal
and anticipated failures to reach a goal. The dognurges
are subject to individual variability and need ragu
satisfaction.
The model strives fomaximal parsimonyin the specification of
urges (this is a methodological assumption). Fstaince, there is no
need to specify a specific urge for social powecause this can be
reflected by the competence in reaching affiliatgaals, while an
urge for belongingness partially corresponds tcettainty reduction
in the social domain. The model should only exptradset of basic
urges if it can be shown that the existing setniahle to produce the
desired variability in behavioral goals. Note thavne of the
aforementioned urges may be omitted without affiecthe behavior.

6. Pleasure and distress

a.

A changein a demand of the system is reflected ipl@asureor
distress signal The strength of this signal roportional to the
extent of the change in the demand measured osieord interval of
time.

Pleasure and distress signals asnforcementvalues for the
learning of behavioral procedures and episodic execgs and define
appetitiveandaversivegoals.

7. Modulation:

a.

Cognitive processing is subject tgobal modulatory parameters
which adjust the cognitive resources of the systém the
environmental and internal situation.

Modulators control behavioral tendencies (actiomdimeess via
general activationor arousa), stability of active behaviors/chosen
goals 6election threshold the rate of orientation behavigafnpling
rate or securing thresholdand the width and depth of activation
spreading in perceptual processing, memory retriaad planning
(activationandresolution level

The effect and the range of modulator values arkjest to
individual variance

8. Emotion

a.

Emotion is not an independent sub-system, a maatuée parameter
set, but an intrinsi@spect of cognitianEmotion is an emergent
property of the modulation of perception, behawod cognitive
processing, and it can therefore not be understotgide the context
of cognition. To model emotion, we need a cogniystem that can
be modulated to adapt its use of processing reeswuand behavior
tendencies. (According to Dorner, this is necesaadsufficient.)
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In the Psi theory, emotions are understood as diguwational
setting of thecognitive modulatorslong with thepleasure/distress
dimensionand the assessment of twgnitive urges$®

The phenomenological qualitiesf emotion are due to the effect of
modulatory settings on perception and cognitivecfioming (i.e. the
perception yields different representations of memcelf and
environment depending on the modulation), and ¢oetkperience of
accompanying physical sensations that result fioeneffects of the
particular modulator settings on the physiologytled system (for
instance, by changing the muscular tension, thestiige functions,
blood pressure and so on).

The experience of emotiomas such (i.e. akaving an emotion
requires reflective capabilities. Undergoing a mnlaton is a
necessary, but not a sufficient condition of exgeeing it as an
emotion.

9. Motivation

a.

Motives arecombinations of urges and a go&oals are represented
by a situation that affords the satisfaction of tmrresponding
urge?’

There may be several motives active at a timepblyt oneis chosen
to determine the choice of behaviors of the agent.

The choice of the dominant motive depends on thicipated
probability of satisfying the associated urge amel $trength of the
urge signal. (This means also that the agent maprbymnistically
satisfy another urge if presented with that opjion.

The stability of the dominant motivegainst other active motivations
is regulated using the selection threshold parametieich depends
on theurgencyof the demand and individual variance.

10. Learning

a.

b.

Perceptual learning comprises thssimilation/accommodatioof
new/existing schemas by hypothesis based perception

Procedural learning depends a@ainforcing the associations of
actions and preconditions (situations that affdrelse actions) with
appetitive or aversivegoals, which is triggered by pleasure and
distress signals.

Abstractionamay be learned by evaluating and reorganizingoelis
and declarative descriptions to generalize and ifill missing
interpretations (this facilitates the organizatiaf knowledge
according to conceptual frames and scripts).

9 This perspective addresgmimary emotionssuch as joy, anger, fear, surprise, relief, it n
attitudeslike envy or jealousy, or emotional responses #natthe result of modulations which
correspond to specific demands of the environnmserath as disgust.

97 Note that motives are terminologically and conaafy different from urges and emotions.
Hunger, for instance, is an urge signal, an associatfdmuager with an opportunity to eat is a
motive, andapprehensiomf an expected feast may be an emergent emotion.
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d. Behavior sequences and object/situation represensat are
strengthened by use

e. Tacit knowledge (especially sensory-motor capabdjt may be
acquired byneural learning

f. Unused associationdecay if their strength is below a certain
threshold: highly relevant knowledge may not begédten, while
spurious associations tend to disappear.

11. Problem solving:

a. Problem solving is directed towarfiading a pathbetween a given
situation and a goal situation, on completingemrganizing mental
representations(for instance, the identification of relationships
between situations or of missing features in aatitnal frame) or
serves amxploratorygoal.

b. It is organized in stages according to tRasmussen ladder
(Rasmussen 1983). If immediate respons® a problem is found,
the system first attempts to resort to a behaviomaltine
(automatism)and if this is not successful, it attempts tostorct a
plan. If planning fails, the system resortseploration(or switches
to another motive).

c. Problem solving isontext dependerftontextual priming is served
by associative pre-activation of mental contentd asubject to
modulation

d. The strategies that encompass problem solvingparsimonious
They can be reflected upon and reorganized acapritinearning
and experience.

e. Many advanced problem solving strategies can noadeqguately
modeled without assumiripguistic capabilities?®

12. Language and consciousness:

a. Language has to be explained as syntactically agdnsymbols
that designate conceptual representations, anddelned language
thus starts with a model of mental representati@mguage extends
cognition by affording the categorical organizatiminconcepts and
by aiding in meta-cognition. (Cognition is not amtemsion of
language.)

b. The understanding of discourse may be modeled almgrinciples
of hypothesis based perception and assimilationfacmodation of
schematic representations.

c. Consciousness is related to the abstraction ofnaegi of self over
experiences and protocols of the system and tlegration of that
concept with sensory experience; there is no egpbap gap

98 Currently, only hill-climbing and an emulation oftation-based search are implemented.
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between conscious experience and a computationadelmof
cognition?®

Arguably, the Psi theory is made up of many fragt@enanswers to cognitive design
guestions, grouped around a relatively simple fionetistic core, i.e. a set of
proposed algorithms modeling basic cognitive furdi These algorithms do not
claim to be faithful representations of what goesroa human or primate brain. They
do not reproduce particular performances; ratlney strive to produce behavioo$
those classethat we would call cognitive: creative, perceptivational, emotional
and so on. In this sense, it is an Al architecture not a model of human cognition.

The predictions and propositions of the Psi thearg almost completely
gualitative. Where quantitative statements are méateinstance about the rate of
decay of the associations in episodic memory, tidthwand depth of activation
spreading during memory retrieval, these statemeams not supported by
experimental evidence; they represent ad hoc solsitto engineering requirements
posed by the design of a problem solving and legragent.

A partial exception to this rule is Dorner's emoiid model. While it contains
many free variables that determine the settingsnotiulator parameters and the
response to motive pressures, it can be fitted umam subjects in behavioral
experiments and thereby demonstrate similar pedoo® in an experimental setting
as different personality types (Dorner 2003, Ddéraemal. 2002, p. 249-324, Detje
2000). The parameter set can also be fitted torsirament by an evolutionary
simulation (Dorner and Gerdes 2005); the free patars of the emotional and
motivational model allow a plausible reproductidrpersonal variances.

Further developments and elaboration of the themy include more quantitative
predictions that could be compared to experimaetllts, and thus the compatibility
to current methodology in experimental psychologuld be increased while adding
useful insights and criticisms to Ddrner’'s paradigitill, a qualitative model of
cognition is not per se inferior to one that leitdslf to quantitative validation: most
fundamental and interesting questions in Cognifieeence do not yet start with “how
much”, but only with “how”. The Psi theory gives madetailed and decisive
answers to quite a few of these “how"s, which do ingply arbitrary postulates but
present avenues for a testable functional modgénéral intelligence, motivation and
experience. Furthermore, the conceptual body aadettminology implied by the Psi
theoy represent a philosophical framework, a fotindarooted in an understanding
of systems science, functionalism and analyticqseiphy of the mind that is broad
and concise enough to start asking and arguingiiquesabout issues like qualia and
phenomenal experience, sense of self and idengigrsonality, sociality and
embodiment, mental representation and semanticg, pimoductive and potentially
insightful way.

99 Dérner subscribes to the computational theory infdnin the strong sense, i.e. he maintains
not only that a sufficiently detailed theory of mircan and should be expressed as a
computational model, but that the mind is in facbanputational phenomenon (Ddrner 2004).
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The breadth of the Psi theory also makes a detaleduation difficult; on the

following pages, | will attempt to sketch what |rpeive as the most salient
contributions of Psi to the field of cognitive mdidg and point out potential flaws
that become apparent when comparing it to existnohitectures. | will mainly focus
on representation, memory and emotion, but makesggeneral remarks first.

2.3.2 Parsimony in the Psi theory

Dérner's approach to modeling cognition bears @rldss to Newell's simplicity
principle of Soar it strives to introduce a minimal amount of odbaal mechanisms
for producing a desired behavior. Dérner treatsntived essentially as a blackbox that
facilitates a certain set of functions. Becauss itsually not possible to open the box
and have a direct look at its workings, the deeisiviterion between alternative,
equivalent explanations of the same functionaityhie respective sparseness of these
explanations. In other words: the Psi theory attsmip identify the simplest
hypothesis explaing the empirically given phenomewthen confronted with a
choice between unitary approaches—a single priacigxplaining many
regularities—vs. a modular perspective (where hifié regularities stem from
different cognitive functions, and individual regtities might even stem from the
interaction of severaimilar cognitive mechanisms), the Psi theory tends ttogthe
unitary model: a single mode of representationseriethough utilized differently
throughout the system), a single set of modulaaods modulator influences, a single
perceptual principle (HyPercept), a single leveligfe indicators and so on.

While this seems like the obvious answer to theiestjof applying Occam’s razor
to an otherwise unwieldy thicket of sprouting shbdries, it is also unlikely to result
in an accurate model of the mind. As John Andersainted out*It is implausible
that evolution would have produced the simpleaicstire for the human mind. ...
One might say that evolution abhors parsimony. &ah typically produces multiple
systems for a function(Anderson 1983, p. 41)

“Imagine a scientist of a past generation arguifigknow digestion is performed
by the stomach; therefore, | have a strong biasirsiebelieving it is performed by
the intestine. And if nature should be so perversdo have the intestine also do
digestion, | am almost certain it will be the exaate mechanisms as are involved in
the stomach. And if, God forbid, that seems ndietethe case, | will search for some
level where there is only a uniform set of digestivinciples—even if that takes me to
a subatomic level.’

We can be sure that the human mind is not to béaiegal by a small set of
assumptions. There is no reason to suppose theimsithpler than the body. ... The
issue between the faculty approach and the un&pproach is only secondarily one
of complexity. The major issue is whether a complxof structures and processes
spans a broad range of phenomena (a unitary apgrpamr whether different
structures and processes underlie different cogaitunctions (the faculty approach).
The only choice is between two complex viewpoints.”

Anderson’s point is certainly a valid one. Howevan, answer can hardly consist in
needlessly reducing the parsimony of the models—Psietheory alreadys a very
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complex viewpoint, and any increase in complexigidd occur with prudence, and
based on empirical evidence that is inconsistetit thie given state of the theory. By
introducing more complexity into an admittedly slifipd model of cognition than
warranted by the empirically observed phenomenég #&bout as likely to become
more accurate as a model of digestion becomesr litthe arbitrary assumption of
secondary chewing organs and parallel stomachsbgeause we are convniced that
evolution would always provide multiple systems dmy given function.

Thus, the stance of the Psi theory towards themletparseness might damn it to
a misrepresentation of how the human mind worksthis seems to be an inevitable
and necessary methodological evil.

2.3.3 Is the Psi theory a theory on human behavior?

Dérner maintains that the Psi theory attempts fotwwa human action regulation
(2002) and the breadth of the activity of the humpayche (1999). And yet one might
ask if the Psi theory is indeed a theory of humagchology, or of something
different. Instead of meticously comparing the timiof model behavior with human
subjects (as often done in ACT-R experiments), expnts focus on things like
simple object and face recognition, principles ofgmitive modulation, problem
solving without symbolic planning and even ArtifitiLife simulation. It is not clear,
for instance, why the Psi theory should give batisight into human cognition than
into the cognitive performance of other primatessophisticated mammals. Studies
of human cognition regularly focus on language, tha ability to synchronize
attention on external objects between individugtin{ attentior), on how an
individual comprehends and represents the meratdssof anotherttfeory of mindl

on the learning and performance of mental arithenetven on the comprehension of
art and music—things that seem to set humans dpart most other species.
Conversely, the Psi theory treats language andaltgcrather fleetingly, and has
almost nothing to say about theory of mind, joittemation or artistic capabilities.
What arguably forms the core of the Psi theory—watitbn, action control,
(abstracted) perception and mental representatismei claimed to be specifically
human, but likely being shared with many other ggedn fact, Dérner’s theory of
motivation bears a lot of semblance to work in alipsychology (Lorenz 1965).

This makes sense, if we accept that there is eitbem single specific property
that sets human cognition completely apart from tfaother animals, but that the
difference is primarily a matter of quantitativeabog, which at some point yields
new behavioral qualities (as, for instance, Johdekson suggest®), or that there is
a very small set of functions that differentiatesmians from other primates.
Candidates for such a specific cognitive toolseghhibe the ability to learn
grammatical language by virtue of a distinctive laummability to apply recursion on
symbol structuresufiversal grammarsee Chomsky 1968), the capability for second
order symbol use (i.e. the fusion of symbols intbiteary meta-symbols, which in

100 plenary talk at Richard Young's symposiultvhat makes us special? Computational
differences in human, animal, and machine intefiige with J. R. Anderson, T. M. Mitchell,
D. Floreano, and A. Treves during ICCM 2006, Triektdy.
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turn would allow for recursion), the ability to &ly associate any kind of mental
representation with any other, the ability to parfabstract planning by recombining
memories and anticipating counterfactual situati@msespecially well-trained sense
at monitoring and modeling other individuals igraup to avoid cheating (Cosmides
and Tooby 2000) or simply the ability to jointlyréct attention between individuals
to enable indicative communication beyond warniigmals and simple affirmative,
supplicative, discouraging and encouraging (impezatmessages (Tomasello 2003).
The study of intellectually high-functioning auigiBaron-Cohen 1995) suggests that
social capabalities are rather inconvincing candslafor an enabler of human
intellectual performance, nonetheless, it might amued that each of the
aforementioned feats either allows for learningmgratical language, or stems from
the ability to use grammatical language.

Dérner himself makes a similar claim when he detishes two different classes
of models of the Psi theory: thsi sine linguaandPsi cum lingua(Dérner 1999, p.
740). While the speechless version of Psi modellg thhose abilities that do not rely
on language, and thus only performs simple protdelving, has limited anticipatory
abilities, primitive planning and does not do wellterms of categorizing objects,
learning grammatical language allows for a hoste behavioral qualities. Thus, in
Dérner's view, the primary role of language for niigpn might not be
communication between individualsabout given object categories, but mental
organization within the individual. Language actsaa organizing tool for thought; it
evokes object representations, scenes and abstreicjuides mental simulation and
sets up reflective mechanisms. Language makes hemiesentations addressable
and thus permits propositional thinking (Henser2,98 28). Without it, associations
would only be triggered by external events, by seefdthe individual or at random,
making abstract thought difficult, and planningtive absence of needs and related
items impossible.

By organizing language itself, by deriving symbtlat refer to relationships and
relational categories between symbols, languagerbes grammatical and allows,
within the same framework of limited cognitive resces, to construct more
differentiated representations, and to manipulase in a more differentiated way.

This view that grammatical language is the primanabler for human-like
thinking is shared by so many people in CognitivéeBce, that it is probably not
necessary to defend it, and is summarized for restaby Daniel Dennett
“Thinking—our kind of thinking—had to wait for télg to emerge,”(Dennett 1996,
p. 130) who also extends this claim to consciousrigs order to be conscious—in
order to be the sort of thing it is like somethittgbe—it is necessary to have a
certain sort of informational organization... [onehat is swiftly achieved in one
species, our, and in no other... My claim is not tither species lack our kind of self-
consciousness... | am claiming that what must be chdlllenere responsivity, mere
discrimination, to count as consciousness at allais organization that is not
ubiquitous among sentient organisn{®ennett 1998, p. 347).

My emphasis on language as a tool for thinking &hoat be misunderstood as an
attempt to downplay the role of communication farowledge acquisition and
organization. Since language allows capitalizingotiver individuals’ categorizations,



160 The Psi theory as a model of cognition

concepts and experiences, it turns each commumicatidividual into a part of a
collaborative cognitive endeavor, spanning not ooler populations but also
including the knowledge of past generations. Nai@tquired by communication
with others do not only become part of propositiona high-level categorical
relations, but may also be fed back into low-lgyeiception. Cultural agreements on
color categories, for instance, lead to distincffedéntiations in the low-level
categorization of color (Steels and Belpaeme 2083}, while it might be difficult to
arrive at useful categorical taxonomies of, sayimafs in a single lifetime, it is
relatively easy to empirically explore the boundarof categories that are supplied by
others.

How would a Psi agent learn language?—Accordinddoner, perception is best
described as a parsing process, in which stimui emcoded into incrementally
refined hierarchical hypotheses. Hypotheses wileh@a be hierarchical, because they
are based on object descriptions consisting ofahyeets or features, which in turn
consist of sub-features and so on. The lowest s&tatures is directly mapped to
input stimuli. If a match between a given set afsti (a neural input pattern, which
is possibly distributed in space and time) and sadtierarchical hypothesis can be
found, then the hypothesis turns into a recognihtion or object (Ddrner et al.
1988; Schaub 1993, 1997; Dérner 1999, p. 149-1TH19. same kind of parser could
be employed to comprehend language. The inputrpatere sequences of symbols,
and the perceptual process would transform them évbked object and situation
descriptions, whereby hierarchical language reptesiens would form an
intermediate stage. Language recognition is nothing a special case of object
recognition, a case characterized by linearizedcrdte input which can thus be
mapped in a relatively well-defined way to a diserehierarchical, systematic and
compositional interpretation stage, which in tuefers to possibly continuous, vague,
hierarchical object descriptions. Thanguage of the object descriptionghe
“mentalese” of a Psi agent) may also encode diggib representations with
arbitrarily linked weights, which might violate cpositionality and systematicity.
More accurately put: linearized, discrete languageused in communication and
introspective monologues is a special case of aemgeneral language of thought.
Therefore, the transformation of an agent’'s memégresentations into discrete,
linearized language is a lossy process. To famliteeconomic linguistic
representations, the transformation process of talese” to language will favor
expressions which are not exhaustive situationatrigtions. Instead, the goal of
linguistic descriptions will have to be sufficiemlisambiguation—thus, like in
perceptual processing, it is not necessary to purateall potentially available data
into the recognition process, but instead, thelabls data is used in such a way that
the perceptual, respective communicative goal—théficent specification of
constraints in hypothesis space—is achieved. Tersevthe process, that is, to
comprehend an utterance, the elements of the otierare used as cues for the
evocation of mental content, which is then furtbenstrained and disambiguated.

The representation and comprehension of languggends on two crucial abilities:
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- Using arbitrary signs to evoke object concepts {mlmse).

- Applying perceptual parsing on hierarchical abstoas of symbol structures.

In fact, these conditions have a lot of implicaipwhich are poorly covered in the
current state of the theory’s development (KUn2€14):

What would a mechanism look like, that allows digtiishing symbols and
referents? In the current implementations by Ddsngroup, this is done with a
specific link type pic/lan) to denote the relationship between labels andabbj
hypotheses. However, every label could be madeotiject of a reference in a
different context, and almost every object desmipfcould act as a label, so the
linking would have to be interpreted depending ontext. A linking strategy that
simply separates memory content into two non-opgileg classes (symbols and
referents) is not going to be adequate.

Grammatical parsing requires recursion, that gejtends on constructs that are
part of their own definition (for instance, in Ergll, anoun phrasean be made up of
an adjective followed by anoun phrasg How can recursion be implemented?—
According to the Psi theory, nothing prevents peiea&l hypotheses from being
partially recursive, to describe fractal objecustures, for instance. Again, neither
the current implementations nor the published thexmver recursion, which would
require multiple instantiations of features wittdnsingle representational construct.
How this could be achieved in the brain is subjefcia lot of ongoing research;
typically, researchers assume that it is done eithieh the neural equivalent of
pointer structures or by “oscillatory multiplexingThe first variant amounts to
temporarily linking “pointer neurons” to the actuaject representations, so that the
activation and state values of neural computationld have to be stored along with
the pointers, not within the actual representatioNgernatively, neural structures
could receive several alternating activation values each representational unit
would undergo an activation cycle with a numbesalisequent time frames, and it
could be part of a different representation (odifferent instances within the same
representation) in each time frame (Singer 200®auch and Palm 2005).

Also, in order to establish grammar, Psi agentsldvaaed to represetypesand
distinguish them from object instances and indigidu to which they need to be
bound during parsing. The representations as documdngedorner (2002) do not
cover types (we will discuss this issue later on).

The representational requirements for languagenaoessary, but they are not
sufficient. Even if grammatical parsing, increménksarning of language-based
concepts and grammatical constructs, disambiguadimh so on are available, Psi
agents will need communicative intentions (i.e. atiwe structure that results in
communicative goals) and a means of language ptiothucrhey will also need to
distinguish between factual and hypothetical desoms (Dorner 1999, p. 675),
ascribe beliefs and goals to other agents when eonwating with them and they will
have to learn how to use symbols in a context dég@rmanner.

To summarize, Dorner acknowledges the role of gratiwal language for thinking,
but the current state of the theory does not cavara manner that would suffice for
implementing it in a model. Therefore, Dérner’'sremt implementations are limited
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when it comes to communication, mental arithmetazgegorization, planning and
self-reflection. This can also be shown experimigntavhen comparing the
performance of Psi agent implementations to humabjests: while Dorner’s
simulations of human problem solving in the “Islagdme (in which an agent has to
explore a virtual world in the pursuit of resounctend to do well as far as emotion,
motivation and strategy selection are concernedr(@®oet al. 2002, p. 312-355), they
deteriorate if people assess their own performasagg self-reflection. Furthermore,
current Psi agents will not be able to tackle task®lving complex hierarchical
planning, as-if reasoning and so on.

These limits are not problems caused by the viemipof the theory, but are
entirely due to its current state of developmenbni#sing research programmes that
would foster the extension of the theory towardsrenbuman-like performance
include:

- The representations specified in the Psi theorylshbe extended to better

cover typologies/taxonomies, and to allow for npi#ibinding and recursion.
The currently suggested representations are a fyaodiation, because they
are very general; they already allow for systematicd compositional
representations, they are always completely gradinge the system’s
interaction context, and they may both be symbaliti sub-symbolic. A
concrete research project might be itoplement the reading of written
sentencesn a given artificial language, using hypothesiséd perception.
This task is concise, but needs both symbolic arzsymbolic learning,
bottom-up cueing and top-down verification, mukiplbinding and
(grammatical and typographical) categories on ipigti levels of
representation. Even in a simple implementationwduld enforce the
specification of these details as part of the theor

- Psi agents need to learn extended symbol use. forddchesis by Johanna
Kunzel provides an interesting start using agrariwabthree-word sentences
with a fixed symbol-referent relation (Kinzel 2004ywhere agents
automously acquire labels for spatial relationshggions and objects, and
can use these to recognize partially describedtsitus later on. Further work
needs to be done to handle ambiguity, polymorptd iaheritance, and the
learning of grammatical constructions to expredssiaole-related situations
(using verbs), attribution, temporal relations @odon. An interesting way to
continue research on symbol use with Psi agentlsl @mnsist in the adoption
of Luc Steels’ multi-agent language acquisitionguigm (Steels 1999, 2004),
where groups of agents collaboratively co-evolventalerepresentations and
linguistic descriptions of perceived objects aridations.

- Luc Steels’ paradigm might also prove fruitful tatend interaction between
Psi agents by enforcing mechanisms for joint attentagents need to agree
on topics and aspects in order to communicate), tantest models for
communicative intentionality, for instance, by caripg settings in which
communicative goals are secondary goals of affiligt pain avoidance,
uncertainty reduction or sustenance, as opposea nwdel of motivation
where communication is a goal in itself. Where camivation aids
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secondary goals (such as searching for food), agergty also need to
represent properties of individual speakers, sushtrastworthyness and
competence, as annotations of the knowledge defieedtheir utterances.

- The application of linguistic descriptions to re@ld situations enforces
mechanisms for the dynamic creation of alternatirgpresentational
hierarchies, the abstraction of situations andosjgis into scripts and the
extension of such scripts by expressing specifferdinces present in a given
case, the handling of inconsistent descriptiongacdon and assertion of
hypotheses, and the maintenance of multiple péaradled partially
synchronized streams of events.

Obviously, completing the Psi theory by adding liistic capability even along the
few lines sketched above is going to involve tredwmrs amounts of research. Given
the approach of the Psi theory—using implementatias models—the accurate
depiction of specifically human performance, as for instance opposed toapgim
cognition, is clearly outside its current scope.tBmother hand, the Psi theory frames
an image of cognition far wider than specificallynian behavior. In providing a
model of grounded mental representation, of theramtion between representation
and perception, of action regulation using cogeitinoderators and of a polythematic
motivational system, it delivers a conceptual framik to capture ideas afeneral
intelligence(Voss 2006), of human, animal and artificial pesblsolving in the face
of a noisy, heterogenous, open, dynamic and senidfonment.

Dérner’s paradigmatic implementation reflects thiis—agents are not simplified
humans or idealized gerbils. Instead, they aregthiike the steam vehicle of the
island scenario—autonomous cybernetic systems a&tady stage of developmentt,
confronted with a complex and demanding world. he tcase of the “mice
simulation” (Dérner and Gerdes 2005), they are angthentic vermin, but abstract
critters: the product of an artificial life evolati over the motivational systems of
simple collaborating creatures. The Psi agentsdcbel autonomous robots, set for
exploration and resource prospection, or hypotaktidiens like Masanao Toda's
fungus eaterqToda 1982; Pfeifer 1996; Wehrle 1994). The Psotly attempts to
explain human cognition by exploring the space ofgnitive systems itself,
something it shares more with models originatind\inlike GPS (Newell and Simon
1961), Soar and CMattie (Franklin 2000), as oppdseittiose models that are tuned
to mimic human regularities. The Psi theory rattleals with the question of how
cognition works, than of how humans perform it.

2.3.4 Representations in the Psi model

The details of Ddrner's neurosymbolic representetillave been laid out in the
previous section already, and | will not recapiteliéneir description here. As we have
seen, they are not defined as a formal calculus givgn implicitly as part of

implementations, or by relatively informal descigpts, by sketching neurosymbolic
building blocks and ways of combining these intdeab descriptions, protocols,
behavior programs. These descriptions are det@fexigh to allow a comparison
with production based approaches or classical adimmest systems in the abstract
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and to illustrate how a computational system mayope cognitive processing. On
the other hand, their definition is too shallowb® translated into a formal calculus
with well-defined properties that could be relatedexisting approaches in logic-
oriented Al. Unlike Soar and ACT-R, which rest grase formal definitions of how
representation and reasoning are to be performghifva given class of models, i.e.
a software revision of the modeling toolkit), Dorreas abstained from constraining
his theory to a single narrow model. Although tieflects the nascent state of the Psi
theory and poses a problem for someone interestadtually implementing a model
of the theory, it may not completely be devoid atue: Where other theories fall
back on formal models, they are burdened with eiflieviding a complete solution
of the problem how cognitive processing is perfaimer deliberately specifying a
system that does not explain cognition (becausériply can not do what the mind
supposedly does), and because—to my knowledgesaat-+no one has succeeded
yet in the former, i.e. in formalizing a completdwgion of the problem of cognition,
it is invariably the latter. Because the “nice”yrfal models are so far incomplete
sketches of cognitive processes, they either do gmtbeyond addressing some
modular piece (and have to assume that cognition bea disassembled into such
modular pieces, one at a time, such as emotiorpeech or vision or learning), or
they provide some kind of Al programming languagmng with the claim that the
brain implements this language at some level, anthér understanding of cognition
involves writing programs in that language. In tlsisnse, Soar and ACT-R are
definitions of programming languages, along witheipreters and established
software engineering methodologies. These languagdsde specific constraints
intended to capture how humans process informasioch as noise, decay, delay and
so on, yet both are probably too powerful, becabeg allow the specification and
execution of programs outside the scope of humamition, and seemingly fall too
short, because they exclude likely architecturahst@ints such as cognitive
moderators.

Clarion, as we have seen, goes beyond the leval pfogramming paradigm
because it presents a more complete picture ofittognit includes a more fine-
grained architectural definition than ACT-R and Se@ad it addresses motivation and
moderation—in these respects, it is similar to Bs¢ theory. On the other hand, it
subscribes to a much narrower neurosymbolic fosmalihan the Psi theory. While
this formalism is less constrained than a clasgioadluction based system (and gives
up some convenient properties of these systemsgsiticts itself to a two-layered
representation and a certain set of learning pgnasli which are not necessarily
backed by experimental results or possess neuogioal plausibility. When
implementing models of the Psi theory, we are férmesimilar commitments, i.e. by
attempting to find solutions to given problems (pleng, representation of the
environment etc.), a representational methodoloay to be specified, and because
we are far from understanding thietails of human cognitive functionality, this
specification will make the models better and theoty worse. The models become
better, because they capture more functionalityd #re theory becomes worse,
because its further specification entails compremisetween the need to engineer a
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working formalism and the constraints presented &yr current, limited
understanding on how to build a system cabableenéal human cognition.

In the next section, we will discuss MicroPsi, whizonstrains the Psi theory into
such a sub-set: in order to construct a frameworkdésigning agents, we have to fill
in engineering details and thereby throw away otitor better design, for the time
being at least, until the theory achieves a betésolution. While the current
resolution is too low to allow a complete formalksffication, let me sketch some
statements here; we will need them in order tousische state of the theory as laid
out in Ddrner’'s publications and implementationsd gooint out some specific
advantages and shortcomings.

Dérner's simulation environments consist essentiadif vectors of discrete,
technically distinct features

Features{( ID featureVectdy, # g Features (B | (2.7)
which are organized into objects:
featureFromObject Objects ObjectStates keas (2.8)

Objects fall into several categories, especialy/térrain of the location (which is
uniform over a location), and the distinguishablisual objects. The latter are
spatially distributed over locations, each inhalgjta two-dimensional bounding box
that is not overlapping with any other bounding .box

objectsAtLocation Locations LocationStatesObjects (2.9)
visibleObjectsAtLocation Locatioms LocationStates @M&(NZXNZ)
(2.10)

Within the visible objects, there are spatially dted features, i.e. each of these
features has a Iocatio(ri, i ) ON?, such that there is exactly one correspondingabbje
with the bounding box (x, y; b, h)DNZXNZat the given location, where
X<i<x+b y< j<y+h.

Locations make up the vertices of a graph, wheee dllges correspond to
transitions between these locations.

World :=(V O Locations EJ \ VO(,i YO E # ) (2.12)

Locations are defined as areas of influence, thatonly objects at the same
location may interact with each other.

In the island simulation, locations do not overlap, an object can only be at a
single location at a time. In the 3D island envim@amt, the world is continous, i.e.
there would be an infinite number of overlappingations. We may ignore this here,
because there is currently no Psi agent that reasotonomously over such an
environment. Likewise, in the “mice” simulation, etle is a continuous2D
environment, but no objects. Here, the agent interaith immutable terrain types
and other agents, which simplifies the problemsegfresentation. A generalization
would have to take these possibilities (and moné) ccount. As it is, Dérner’'s
implementations of objects in agents’ world modeds not cope with overlapping
locations and locations within locations.
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From the point of view of the agent, there is areobthat is part of every
location: the body of the agent itself. The feasuné this object are the agent’s body
states; they are manipulated by the environment i(fstance, if the agent takes
damage, uses up or replenishes internal resourndsre accessible at all times.

States in the world differ on the level of locae. objects may move from one
location to another) and of objects, i.e. if aneabjchanges, then the associated
features may change too, and every change of aréeabrresponds to a change in the
state of the object. Removal and addition of olsjeetn trivially be treated as changes
to or from a special “disappearance” state, or hg transition to or from an
inaccessible location.

An event is a change in a state of a location (heving of an object) or in the
state of an object, and may be caused simply bpithgression of time, or by current
object states demanding such a change. Thus, itindagion environment needs to
implement a state transition function to effectstnehanges.

Let objectsAtLocatiofl,t) be the set of objects at a locatibrat timestept,
objectState@,t) the corresponding object states, aedchableLocation$) the set of
locationsm for which exists an edge frofrto m in the location graph. Updating the
objects is matter of checking for demand-changitades of objects at the same
location. Such states would for instance corresgona burning object that lights up
other objects in its neighborhood and turns intteastself.
updateObjects)l: objectsAtLocatipn )% objectStates Lt offjeates | t+1)

(2.12)

In addition, we need a transition function to mamlgects from one location to

another.

updateLocations Y: for each I V:
objectsAtLocatiof,l x objectStates ) t
- objectsAtLocatiof,l +1)
objectsAtLocatioQ m +1)x---x objectsAtLocatipn, mt+ 1)

with {m,... m} = reachableLocatio($ |

(2.13)
This function evaluates object states corresponttinigcomotion. If an object is in a
state that demands a locomotion event, it is teansdl to another location along one
of the edges of the location graph, provided sushedge exists. This “transfer”
amounts to deleting the object from the set of cisjat the current location, and
adding it to the set of objects at the target liocat{The state may also demand a state
change in the next object state, which brings loation to a halt.)

The agent is represented in the world as a speddifiect, with a certain location
and states that correspond to its actuators. Thesguator states
act...ac, 0 Actuatorare set from within the agent, as part of its mainformation
processing. For example, if the agent attemptsotmrhote, its representational
structure sets one (or several) of its object stétee ones corresponding to actuators)
in such a way that the transition function transfére agent from one location to
another. There are specific actuatapproaclt{x,y) andfocugx,y) that correspond to
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moving amanipulatorand afoveal sensoim two dimensions within the visual space
of the location. The state of the manipulator detees, via the bounding box of the
approached object, on which object specific openatiare performed. In this way, it
is possible to manipulate individual objects bgtfiapproaching them, then triggering
an operation. The position of the fovea sensorrdetes the coordinates at which
spatial features within a visible object are sampl&his sampling works by
transferring the state values of the featureseaptbsition specified bfocugx,y) into
the sensory array of the agent.

In general, sense data are transferred to the agemigh an interface function
sensé location locationState fogus x)y) Sen, which maps the features of
the objects at the current location to the inpuayaGensorsand a similar function
act( Actuators location approac¢h,x)y—  object®ss.

The agent builds representations grounded in they avf Sensors whereby each
sensor has a real-valued activation that is sethbyinterface functiorsense and
effectuates changes in the world by changing ttigaaon values within the array of
Actuators.

Generally, representations consist of notlegcalled quadg, which include the
sensors and actuators, and relations between tioeles. The Psi theory specifies the
basic relations

- por(i,j): nodej is the successor of nodei.e. the object referenced by
follows the object referenced byn a sequence of features, protocol elements
or actions,

- sul(i,j): nodej is partonomically related to nodlei.e. the object referenced
by j is a part of the object referenced ibyt is a sub-object, a feature or an
attribute,

and their inverseset (the counterpart t@por) andsur (the opposite osub). These
relationships are implemented as typed links betwge nodes, which may be
controlled by switchesattivatorg. These control the spreading of activation alang
link-type and thereby allow tracing the relationpshof representational units.

While the relational links are weighted and sigreedl can thus express partial
degrees of these relations, Dorner’s discussiotsdeth the semantics of binary
links with weights of zero or one.

The set of representational entiiynay thus be described as:

el E:~ €J Sensorfls Actuators

GONOjOEOe=sulfij ) (2.14)
O0OEDjOE Oe= por(i, j)

In other words, the simplest representational wani¢ésindividual sensor nodes and
actuator nodes. All other units are made of theséspor of other units, by chaining
them into sequences, or by arranging them in apanical hierarchy (a tree of part-
of-relationships) with sensors and actuators asldmest level. Representational
entities include object definitions, scenes, plaasd protocols (procedural
descriptions of actions and episodes). For instaagdan may consist of chains of
actuators that are arranged hierarchically, antethey be additional chains on each
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level of the hierarchy, i.e. every step of the ptamsists of a sequence of sub-steps,
made up of more elementary steps, until actuat@k the atoms of the plan. Plans
are executed by spreading activation alongpthrelinks, unless a node hasablink,

in which case the activation is spread to shblink first.101 If a node has more than
one subiink, then activation may be spread along all efnthat once and the sub-
sequences are executed in parallel.

The inclusion of sensor nodes makes plans conditiohhe execution only
continues past the sensor if the sensor becomés ggte. if the corresponding
environmental feature delivers activation via thensefunction). In this way,
behavior sequences may be formulated.

Objects may be recognized using a plan that chieekall their sensory features.
In the terms of the Psi theory, an object desanipis a plan to recognize that object.
By nesting such recognition plans sablinked hierarchies, objects may be defined
using sub-objects, scenes may be defined usingctsbibat are part of the scene,
episodes may be stored using sequences of scenes.

Usually, behavior sequences will be interleavedwibject descriptions, and vice
versa, because the execution of behaviors usuadjyires that the agent checks for
available resources, preconditions and postcomdifiand the recognition of objects
requires behavior sequences, such as moving thmalreensor to focus individual
features (before checking them) or using the lodomyoactuators to get to the
appropriate location.

Demands are expressed as specific sensors, ise. $e@sors become active when
demands are satisfied, remain active or are ineteaBy linking to demands, the
relevance of elements, plans, protocols and olgjestriptions for the well-being of
the agent can be expressed. As discussed in gtediction, a wide range of semantic
relations can be addressed with the basic reldtipgs

- Partonomic relationsexpress the relationship between a whole and atssp
They are equivalent tsublinks between an element and its parts, sudinks
for the opposite direction.

The same type of link is also used to expressédlaionship between a concept
and itsattributesin the abstract, because these attributes camtbepieted as
parts, and vice versa.
If two entities are sub-linked from the same pamm are mutually exclusive, then
they stand in a relationship ob-hyponymyithey are “co-adjunctions”).

- Successiomf events andheighborhoodof features is expressed usipgr-links.

Such chains may also represent behavior programtheke chains branch,

10170 properly execute plans this way, it has to fsueed that subsequent steps become active
subsequently, and not befasebiinked chains of steps of their predecessors aishigd. This

can be achieved in several ways: by adding additimibitory links, by implementing a back-
tracking scheme that maintains a pointer and aksiadkeep track of the branches in the
execution, by using a state-machine within the sodad information on whether their
neighbors are active, by transmitting messagestivétactivation, or by establishing temporary
links acting as indicators of execution states witihe plan. Dérner does not discuss any of
these, though. The implementation within the Islamdulation uses centrally controlled back-
tracking instead of activation-spreading.
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contextual (additional) activation and inhibitionaynbe used to decide which
branch to follow, so it becomes possible to expoesglitional plan segments. By
reinforcement learning (selective strengtheningtle links) and ‘forgetting’
(gradual decay of the links), the agent may acqairdibrary of behavior
strategies.
Predecessioiis expressed biet-links. (If there is gor-link between two entities
e; ande,, then there is usually an inverst-link betweere, ande;.)
Dérner also suggests thadr andret exprescausation i.e. the expressiopor(e;, &)
implies that that an evem is caused by the othgupr-linked evente;. There is no
distinction between correlated successive occueramd causation here, and if it was
to be made, it would have to be added on top sflihisic description using linguistic
labeling. Thus, there is no difference betweeneat@cessor role of an entity and its
causative role. The weight of the link and the nambf links may express the
expected likelihood of succession/causation, whedults, when properly evaluated,
in aBayesian networksee Russel and Norvig 2003, p. 492). This icHse when the
link strength is purely derived from co-occurreméeevents. If events have appetitive
or aversive relevance, the reinforcement learnihghe agent will strengthen their
links disproportionately to the Bayesian rule, xpress motivationalelevance

- Spatial relationsare annotategor/retrelations. Here, entities that are grounded
in visual features (i.e. with the lowestiblinked level being visual sensors) are
connected with chains that contain actuator commaadmove the fovea (the
visual sensor arrangement) or the agent (whichudted the visual sensor
arrangement). In other words, there is a strugborée;, e,); por(e;, &), wheree;
is a visual description of a feature asudrlinked chain,e; is likewise the visual
description of another feature, agds a motor command (assabiinked chain
of actuators) to move between the relative posstiofre; ande;. Dorner calls &;;

e; &) atriplet.

As shorthand, the motor commaegdto move the fovea might just be expressed
with a pair of numbers that annotate the link betwe andes. This pair Ky) is
interpreted to actuate the equivalent of vertical horizontal foveal muscles, so
the visual sensor set is moved through the scene.

- An instrumental relation(here: the relation between two world states drel t
behavior that changes between them) is represesied a triplet of two world
descriptionse; and e; and an intermittend change-actien The instrumental
relation is then thesublink that connects, to a behavior program. According to
the triplet concept, an instrumental relation wobkla sub-link from a protocol
element (denoting the change-event) onto a behavilgram (or a sur-link in the
inverse direction). I&; is sur/sublinked to an entity denoting aagent then the
sublink between agent and action expresseadaor-instrumentelationship.

- Temporal relationsare expressed as extensions of the successorpesde
relation by annotating these with weights that iaterpreted aglelays(when
executing plans) odurations(when recalling protocols). Dérner suggests to use
the weight of thepor-links directly, but this will conflict with the Bgesian
weights, or with the motivational relevance thamn@mally captured in these
links. A straightforward and logical way of expriegsdelays and durations may
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work analogous to the spatial relations; only iadt®f using a spatial actuator,
we would use a “temporal actuator”. Such a tempactator amounts to a clock
that waits during plan execution/perception, or @&chanism to retrieve
temporally distant elements of the protocol durimgemory retrieval. As
shorthand, we may add a temporal annotation tdirtke. While this is a viable
engineering solution to the problem of representiome aspects of the passage
of time, it is probably not a good model of how thenan cognitive system deals
with time. It is unlikely that the temporal code jisst a degenerate case of a
spatial codé?%?

- Appetence relationare por-links between a demand indicator and a situation/a
behavior program that fulfills the respective dethaiConversely,aversive
relationsare connections between a situation of demandréticn (for example
an accident) with the respective demand indicdimr §xample the demand for
integrity). Although both relations angor-links, their semantics are different
from por-links within protocols and behavior programs, because the d&man
activators are used as activation sources duritigder planning and identify
appetitive (positive) and aversive goals.

- A final relation is the connection between a behavior and its doathe Psi
theory, a goal is a situation that is associateti wimotivational value, in other
words, an entity associated with a demand indicaDifferent from ACT-R,
Clarion and Soar, there is no goal stack or gastl Bub-goals exist only
implicitly, as situations that are prerequisitesréach the goal-situation. Also,
goals always have to be associated with a motivatioelevance, because the
semantics of goals stem from the pursuit of gaalasions, and Psi agents only
pursue motivationally relevant situations activéfhus, goals are less abstract
than in most other cognitive architectures—the exrpenter has to set up
experiments in such a way that the agent “gets #unte out of’ the desired
behavior.

There is no proper “is-a” link in the Psi theoryepresentations, so it is difficult to
expresgypesandclassesFor instance, to express the relationship betveeeabject
and a linguistic label, we may treat the linguiddbel as aqublinked) attribute of
that object. But it is not clear how this label wbbe distinguished from a proper
part. Using “is-a” links, we could express that timguistic label “is a’label, and the
object “is-a” referentof that label, as in many other semantic netwatkemed?3

102 Time seems to be cognitively fundamentally differefrom space, even though
geometrically designed representational systenth asinterval calculi(van Allen 1983), may
treat them as analogues. But it is unlikely that amosnuniversally resort to geometric
description systems, rather, representations areapty organized as objects/situations, which
may haveadditionally locations and spatial extensions. Temporal sitnation the other hand,
are all part of timelines, with events being astgaartially ordered. The latter leads to “mental
object trajectories”, with the temporal dimensiogirly more or less identical to the causal
dimension. (See Anderson 1983, p. 51, for additiarguments.)

103 when confronted with that difficulty, Dérner’s gqinas introducedd hoelink-types into

particular implementations, for instanie for linguistic labels, anaol for colors. While the
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Another aspect of “is-a”, theccommodationof a schematic description for less
abstract descriptions, can of course be expressglititly. For instance, it is possible

to have vague, generic description of a cat thatl&vanatch the majority of cats, and
a more detailed description that only matches glsimdividual cat. By checking for

multiple matches, an abstract-concrete relationsbigd be established—but this is
limited to those cases in which the abstract schierimeed simply less detailed than
the concrete one, or in which the matching is peréal using linguistic labels.

Dérner's representations may be used by tracingslidirectly, using temporary
“pointer links”, which are connected to individugitities or sets of entities using an
associator (So-called associators and dissociators may legiabr remove links
between currently active entities; for this, theyl have to be connected to the same
associator or dissociator entity.) The other modeusage relies on spreading
activation, starting from source nodes, along titividual link types. Since links can
be switched depending on the statadtivators(there is an activator entity for every
type of link within a group of entities), the spdeean be directionally constrained.
Combining these methods, the representations ofaffent act as a model of its
environment and as acquired control structures.ifgiance, if the agent is exposed
to environmental features, the activity of sendstsnulated” by these features may
spread activation to object hypotheses that contanrespective sensors, and these
object hypotheses may be validated by executingh eaic them to find an
interpretation. Likewise, if a demand (representgda sensor corresponding to a
body state) arises, links to behavior sequencdshtie led to the satisfaction of the
demand in the past can be followed, the objectsl#ad in these sequences can be
identified, the scenes containing these objects lmarfound, and the agent may
attempt to retrieve or even construct a plan thiaigs it from the current scene into a
situation that satisfies the demand.

In the above description, D6rner’s partonomic hignges are symbolic, i.e. each
node is the root of a representational entity. Hewe they may also easily be
extended into semi-symbolic descriptions by usiegl-walued link weights. By
interpreting the representational hierarchies ad-ferward networks, sensory nodes
may become the input layer of perceptrons (Ros&nb868) that classify objects,
with higher-level nodes acting as hidden layerstuAtor nodes may be addressed
using real-valued activations as well, allowing ttibcontrol of the agent’s
movements and activities.

2.3.4.1 The grounding problem of mental representat  ion
As we have seen, mental representation, the guesfidiow a system may store
information about the environment and itself, anowhit may manipulate this

color-link is arguably obsolete, because it is fmlego identify the color aspect of an attribute
by the connected sensor elements, the problenf itselery real: The Psi theory needs a
mechanism to define new link semantics, whenever nbed arises, and in most general
purpose semantic network formalisms, this is dosingu“is-a” (Sowa 1984, 1999; Russel and
Norvig 2003, p. 366).
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information, is central to the Psi theory. Dérndosus on how a system relates to its
environment has changed, however, over the years) & monolithic input driven
system (Dérner, Hamm and Hille 1996) to the perspeof autonomous, situated
agents (Dérner 1999, 2002) and eventually towanasiki-agent system (Ddérner and
Gerdes 2005).

In an extension of his 1957 classic, tlar Diaries the famous Polish
philosopher and science fiction author Stanislawnl@&ho was a friend of Dietrich
Dérner and influenced his view on psychology andberpetics in many ways)
described a non-interactive virtual reality (Lem71® Built by the mad and
embittered scientist Professor Corcoran, it cossaft rotating drums, in which
magnetic tapes store pre-recorded sense-data. @h&sare electrically fed into rows
of boxes containingelectronic brains” (“each of these boxes contains an electronic
system generating consciousngssEach of the“brain boxes” has got“organ
receptors analogous to our [human] senses of srasdte, touch, hearing”and“the
wires of these receptors - in a way, the nervese-ret connected to the outside
world,” but to the prerecorded data, which descritiee perceptual aspects of a
complete solipsist universe: “the hot nights of Hoeith and the gushing of waves, the
shapes of animal bodies, and shootings, funerats lzacchanals, and the taste of
apples and pears, snowdrifts, evenings that arentspéth families at the fireplace,
and the cries aboard a sinking ship, and the casigns of disease.This pre-
recorded universe is not completely determinidiiecause “the events in the drums
are inscribed on rows of parallel tapes, and acsmleonly controlled by blind
randomness” chooses the sense-data of each “wafraba given time by switching
between these tapes. There is no feedback frorftbth&” to the world, however, i.e.
the recordings are not influenced by decision$ef‘brains”, and the different brains
are not interacting with each other (they &reibnizian monads, clad in matter”).
This perspective is mirrored in Dorner’'s and HiéleEmoRegul model: here, the
system is fed a pre-recorded or random stream ehtsv Some events act as
predictors for other events, and the system letarasiticipate aversive and appetitive
situations.

In classical modern logic (see, for instance Carh@p8), we start out with a
domain of objectively given objects—typically intluals. These individuals are
distinct and identical only to themselves, and tleg treated as the atoms of
meaning; what constitutes these objects if notyedlinterest to the model.

For a Psi agent, objects are not objectively gagindividual entities. Individuals
do not make up an empirically or ontologically givigpe (see Montague, 1973, for
an example of how individuals are postulated imfalrsemantics).

The Psi agents start out with patterns which theyesto organize. For instance,
in the case of visual input, the patterns are @dlénto types (with specific sensors
that are sensitive to certain elementary patterangements). These in turn are
abstracted into Gestalts, which make up shapesthase in turn are parts of visual
object schemas. Visual object schemas can have taaals of sub-schemas. Thus,
objects are constructions of the system, a cekiaith of high-level abstraction over
the input.
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In much the same way, acoustic input should begased: basic patterns arriving
at the cochlear sensors are matched to phonemethesel are eventually abstracted
into distinct acoustic events (for instance wordgarticular noises). Objects do not
necessarily have only one kind of description, eatlthey might have many sensory
modalities of which they are composed and whictcidies how the object could be
recognized.

According to Daniel Dennett (1987, p. 213-236),r¢hare three ways in which
information may be incarnate in a system: explic{th the form of interpretatable
symbols), logically (derivable from explicit infoation) and in a tacit manner. Tacit
knowledge does not rely on an explicit represemtatbut emerges in conjunction
with the environment, such as the way mathematicadms are embodied by a
pocket calculator, hydrodynamic principles are edi@d in the movement of a fish,
and walking patterns emerge from the interactionafral control and the kinematic
interaction of body and environment. This tacit Wedge depends on feedback
between system and its world, and it is fundamertal building mental
representations of the environment. In a “pre-réedt environment, it would involve
the prediction of all actions of the system, anerdifore, it is not easily captured by
Corcoran’s boxes, or Dorner's EmoRegul (here, astiare missing or ephemeral,
since they do not influence the environment).

The Psi agents of the island simulation do notesufiforn this limitation. In this
more advanced instantiation of the theory, thettéevel consists in sensory
perception and the sensory feedback provided torafgither as somatic response, or
as change in the environment) via sensory unitpli€ikrepresentations, which may
be localist or distributed (symbolic or semi-synibphierarchies, encode the sensory
patterns by organizing the activation of the seypsanits. Finally, there are
mechanisms that derive further knowledge from thiepeesentations, for instance by
the acquisition, reorganization and retrieval obtpcol memory, and by the
generation of new plans.

In DOrner’s architecture, tacit knowledge is addegson the level of sensors and
actuators and the behavior programs including them.

For a look at a schematic example that illustrates concept, see figure 2.8. The
representation of an object—a dog, in our illugtrat-involves its partonomically
related sensory description and its relationstopstiher representational units—either
via sharing episodes with them (such as a cat maglated to a dog if they are both
part of an event sequence in memory, where a ahtaadog were fighting), or by
being directly related to the agentsehavios. Such involvement might include
episodic memories of a dog licking the hand of sheject (the Psi agent), thereby
generating armaffiliation signalthat triggers the satisfaction of the affiliatargge of
the agent. It may also be related to adversiveodps, such as memories of being
chased by an aggressive dog, where a successhpeeseas facilitated by running,
and a failure to escape resulted in taking damage td an attack of the dog.
Connections of the “auxiliary sense” of the concepta dog, to fragments of the
protocol memory of the agent establish relatiorstiptween the appearance of the



174 The Psi theory as a model of cognition

dog (itssublinked parts that allow to recognize it) and tletians that dogs afford:
things like stroking it, or running away from it.

auxiliary sense

episodic schemas/behavior programs involving dogs urges

cat and dog fighting cuddling fleeing

dog licks dogbites || O
hand integrity/
avoid pain
. ) I @)
stroking running affiliation

\%/ \¥/

reference symbol

Wy || i

Figure 2.8: Grounding of representations accorttinipe Psi theory

Figure 2.8 also illustrates an auditory signal, §pe@ken word “dog” that may be
represented as a sensory schema itself, and edlittkthedog concepas a feature. In
the context of communication between agents, thésial feature acts aslabel to
evoke the concept.

What is interesting here is that all representatiderive their semantics by virtue
of encoding the patterns corresponding to the featof the environment. Thus, the
representation of a dog is not simply a set ofs;utepictorial description or the entry
within some internal encyclopedia. Rather, DOrnegjsresentations are constructivist
in nature, the perceptual aspect of a dog is ardimelassifier over stimulus inputs, it
is a simplification over a part of the environmederived by encoding an aspect of its
pattern into an object and thereby allowing an#tipn, planning and communication.
A dog is not a mnemonic for the programmer of teeifplementation that refers to
the programmer’s abstract idea of dogs in the "neakld, or some Platonist “essence
of dogness”. It is a structured shorthand for astelu of features. All knowledge
related to dogs is the product of the evaluatiomtgraction with the feature clusters
that have been classified as dogs in the pasty abbtraction and reasoning. If agents
are able to communicate, they can also acquire lketge by translating utterances
into further object descriptions, behavior progrand episodic schemas, but all these
representations will eventually be grounded in sehand actuators.
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The integration of tacit knowledge and the fact tharner’s representations derive
their semantics from their reference to interactiontext which they encode, marks a
departure from symbolic Al's disembodied, ungrouhdelculations. Of course, it is
not new to Al in general—calls for grounding reestions in sensori-motor events
have been around for a long time (Bailey et al. 72990hen et al. 1997). Where
purely propositional systems, such as Len&ig (Lenat 1990)—and Anderson’s
ACT-R, too—provide rules that derive their semasfiom the constraints inherited
through reference on other rules, the representaitid a Psi agent encode perceptual
content, learned environmental responses (episowmory), strategies to elicit
environmental responses (plans) according to tierdgfnces of the system, the
relationship between stimuli and demands (motivetiaelevance) and states of the
system (cooccurrence of emotional and physiologicaifigurations). This provides
technical disadvantages as well as conceptual ilenesi agents may only represent
things that are accessible to them through pereé@ind actorial affordances, and
derivations of these things. On the other handetperimenter does not have to code
knowledge into the system, and the system’s knogddsd not constrained to what the
experimenter bothers to code. In contrast, CycADd-R may theoretically represent
everything that can be expressed by their respeptiopositional languages, but there
is no guarantee that these representations aretidegi of the same semantics that the
experimenter had in mind when he or she coded tinémnthe system—they might
just be superficially similar expressions, thattlgy might share the propositional
layer, but lack the functional equivaleri®.Imagine, for instance, the propositional
encoding of the semantics of a finger, for instabgeexplaining the partonomic
relationship of the finger concept to a hand coheeyl its instrumental relationship
to the concept of pushing a button—such a repratientwill require a large set of
statements and will still be indistinct from otheets of statements with the same
structural properties (i.e. another cloud of expressions with same number of
conceptual entities and the same types of reldtipadetween them). In contrast, the
grounded representation of a finger may start fthe perceptual properties of an
agent’s own finger, as they are afforded by thessgnstimuli associated with it, and
the feedback that is provided by motor actions eomiog that finger. Here, the
agent’s hand concept will bear a partonomic retegtiip to the finger concept as well,
and button pushing concepts will be derived frora fimger's motor aspects and
perceptual properties, but the difference is: thpresentations are aligned to the
agent’s interface to the environment, and abstastias they are used in anticipation
and imagination, becom@mulationsof what they abstract from.

According to Lawrence Barsalou, a concept shouldsben as a skill for
constructing idiosyncratic representations (BansaD03), and in a Psi agent,
conceptual representations are denotations of skitl: actions are represented by
behavior programs effecting operations affordedhgyenvironment to the particular

104 Tg be fair: in many experimental setups, the drpemter is only interested in modeling the
propositional layer, and this is difficult to actewith Dérner’s Psi agents, as long as they are
not taught on a linguistic level.
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system, object representations are behavior pragtantecognize and/or internally
simulate the respective object, episodic memoryaina sequences of actions, events
and object descriptions. The representations withiRsi agent define perceptual
symbol systepas opposed tamodal symbol systerfBarsalou 1999).

Perceptual Analogue ‘modal’
States Symbols

Memory

Extraction

|————= Language

Reference

Thought

Neural Activation Images,
(Conscious Experience) Image Schemas,
Perceptual Symbols

Perceptual Arbitrary ‘amodal’
States Symbols

Memory

Transduction

((Chair = ¢4)
(Back =by)
(Seat = 54)
(Legs =1y))

——» Language

Reference

Thought

Neural Activation Feature lists,
(Conscious Experience) Semantic networks, Frames, Schemata
Predicate Calculus Sentences

Figure 2.9: Modal representations, as opposed tmlahtrepresentations (see Barsalou
1999)

Barsalou's plea for making concepts simulatorsméraction context is shared by
many others, especially in the embodied linguisticenmunity (Feldman 2006;
Bergen and Chang 2006; Steels 2004), because afetimand for a representational
counterpart to linguistic structure that allowsodel the understanding of utterances
by mentally recreating their objects. However, hildhink that this argument by
necessity warrants a philosophical damnation of b®jim systems. It is entirely
possible to build ungrounded symbolic simulatore. (i'habitable” environments),
where the simulation is explicitly programmed by #xperimenter. For instance, in
Terry Winograd's classical SHRDLU (Winograd 197#)e control program of a
simulated robot arm converses about its operaiiorgs simulated world of building
blocks plocks world. The utterances of the system are not (completeigrounded,
because they refer to the operations and consraffdrded by the simulation. When
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we test SHRDLU, we are likely to ground our impéses and our understanding of
SHRDLU's utterances in our very own mental simglatof a blocks world, not in a
real set of toy blocks that we have to have at hanchake sense of what SHDLU
tells us. There is no immediatheoretical danger in the fact that SHRDLU’s
simulation is not itself grounded in experiencesRELU has made in a physical
world, whereas our own simulation is probably dedifrom such experiences, as for
instance Dreyfus (1997) seems to suggest. Forezpidbgical reasons, making such
a difference is not meaningful, because there igpaoiot in showing thatny two
representations/simulations refer to the same enwient. Furthermore, this is of no
importance: for conversations between humans abmanipulations of a blocks
world, it would be completely irrelevant if they tgeheir knowledge through
childhood experiences, contemplation, reading sindi revelation, as long as their
knowledge captures the same functional propertieksralationships. But there is a
practical danger in using hand-coded, abstracted simulatifors grounding
SHRDLU’s world: SHRDLU'’s linguistic utterances mighefer to a structurally
different simulation; SHRDLU might use the sameestzents to denote a different
reality. Real toy building blocks have many moreoperties than Winograd's
simplified abstractions: their continuous positioromplex shapes and mass
distributions, surface friction and inertia alloverfconstructions (winding arcs,
upside-down pyramids, domino-chains) that are imjdes in SHRDLU's simulation,
and which can therefore not be conceptualized HdefSHRDLU's simulation nor its
problem solving methods can simply be extendedafmture the world of “real” toy
blocks, because a description of realistic physigalamics by discrete rules is just as
intractable as discrete combinatorial planning oweany feature dimensions—
SHRDLU (i.e. this particular symbolic, rule-based approach to a descriptiora of
blocks world) does not scale (Dreyfus 1992, p. ¥2)ile there are aspects, regarding
to which the abstract blocks world can claim isopmigms to a world of real toy
blocks, the structural similarity quickly breakswio when looking too closely. Of
course, human mental simulations may be incomptese—but theydo come with
scaling and revision mechanisms, which may succéeddealing with the
inadequacies by dynamically extending, restructuend adjusting the simulation as
the conversation goes along.

The practical danger of using different simulaticass objects of reference in
discourse does not automatically disappear if weefdthe system to refer to the same
physical environment by turning it into a robot, dguipping it with video cameras,
touch sensors, manipulators and locomotion. Siheeenvironment is defined by
what it affords with respect to interaction andga@tion, such a robot is unlikely to
share our environment, one where we may carve wdodb trees, fix a broken TV
remote, lick a stamp, peel skin from a sun-burrgenserve tea, show guests to the
door, queue up for theatre tickets, vote in elejachoose a book as a present for a
friend. While sensory-motor grounding provides &tion to the symbol grounding
problem in general (Harnad 1997, see also Neis365,1Putnam 1975 and Lewis
1995), what matters is not that the world behing ititerface shares the same sub-
atomic makeup, but that the system is able to desiucturally (functionally) similar
representations. If the experimenter could manuadbe such representations into the
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system, they will not be somehow “semantically i€ to those acquired
autonomously by the system by evaluating its imtiisa with a physical
environment. Also, to many researchers, it is niear if statistical or weakly
grounded approaches to knowledge modeling are eatyiimited in their success
(see, for instance, Burgess 1998: HAL; Goldstorek Ragosky 2002: ABSURDIST,
Landauer and Dumais 1997: LSA). And if a systeneriiaces with a physical
environment, but lacks cognitive facilities for pessing the resulting stimuli
appropriately (which is probably true for the conggwision systems of today, for
instance), if it does not have the motor skillset@ble rich interaction, or lacks the
cognitive apparatus to incite motivational relevarsocial interaction and so on, then
this interface to the physical world will be ingafént to ground symbols for human-
like cognitive processing.

There may not be strong theoretical (philosophitdsons for asking for sensory-
motor grounding of mental representations of ewamyceivable cognitive system in a
physical reality, by there are strong practicalsoees for constructing a model of
human cognition in such a way that its represemtatirefer to the structures of an
environment. This is what the embodiment of a cigmisystem delivers: not the
sparkling touch of a mystery “reality substancehiath somehow ignites the flame of
true cognition, but—possibly—a suitable set of @ais to constrain the
representations of the system in a way similaruis.0and a benchmark that enforces
the use of autonomous learning, the genesis oflgmolsolving strategies, the
application of dynamic categorization of stimuldaso on.

2.3.4.2 Properties and limitations of representatio  ns in the Psi theory

How can Dérner's style of representation be clad® Because Dorner’'s basic
neural elements are used to construct basic semnanits uadg that form a network
capable of Hebbian learning, Dérner calls it a akaetwork. Although this is not
incorrect, it might be more accurate to term itierdrchical causal network or belief
network (Good 1961, Shachter 1986), because thesnggbically represent features
or cases (see Russel and Norvig 2003, p. 531)iefBetworks are often also called
Bayesian networks, influence diagrams or knowleuges.)

The organization of memory is also somewhat simdaase Retrieval Networks
(CRN) (Burkhard 1995) from the domain of Case BaRe@soning. Here, sensory
nodes are equivalent toformation Entities(IEs), and schemas are called cases. If
schemas are hierarchical, intermediate schemas@u@alent to concept nodes.
Horizontal links (et/por-connections) are somewhat comparable to similaits,
while vertical links are akin to relevance arcspé&ally during memory retrieval, the
analogy to CRNs with spreading activation (SAN)drees obvious. Again, there are
some differences: similarity arcs in CRNs are waid, which often leads to
problems if the activation is spread more than onéwo steps due to loops in the
linking of the IEs (Lenz 1997). On the other haret/por-connections do not really
depict similarity but relate elements at the sameell of a belief network, so the
process of spreading activation does not only fiad, similar super-schemas (cases)
but activates more details of the currently acédastructures.

Because of the hierarchical structure and a speatifide of access using cognitive
modulators, there is also some similarity to 8ignetof the CopyCatarchitecture
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(Hofstadter 1995; Mitchell 1993). Like the Slipnéhe quad net uses spreading
activation and allows for analogy making in hietacal concepts by way of allowing
conceptual ‘slippages’, in CopyCat controlled byamameter called ‘temperature’; in
Psi using theresolution levelparameter. (There are differences in the actuageis
between ‘temperature’ and ‘resolution level'—thenfier allows to control the level
or hierarchy where slippages occur, and the lattey affects parameter ranges and
element omissions). By the way, this is the onlyywa which the Psi theory
addressesimilarity: here, it is always spatial/structural similariffhe degree of
similarity is reflected by the amount of detail that has ¢onleglected to make one
representational structure accommodate anéfRer.

The quad structures are not just a mechanism teeasiccontent in memory (as
many other spreading activation schemes), theytlaebuilding blocks of mental
imagery, causal and structural abstractions ar@hswithin the mental structures of a
Psi agent. Chains of quad or directly linked indial neural elements may also form
control structures and act as behavior programspifg a library that is similar to
CopyCat’scodeletsor thecoderack in Stan Franklin's ‘conscious agent architecture’
(Franklin 2000).

Dorner maintains that the Psi theory uselemago represent objects, situations
and episodic sequences (scripts). Schema archig¢schave been around in Artificial
Intelligence for quite some time (see Bobrow andh®grad 1977; Minsky 1975;
Rumelhart and Ortony 1976; Schank and Abelson 199G@)ner’'s descriptions seem
to be missing some key elements, such as typed (imksome other way to express
types) and distincslots for attributes. The latter might be expressedsbiglinked
chains ofpor-linked elements, however, and an extension foedylnks, even though
it is not part of the theory, is relatively straiffiiward (as we will discuss in the next
section, wherdicroPsiis discussed).

Dorner uses his schemas as ‘modal’ representatitms-sechema representations
in his model are grounded in perception. But shorddresentations really be
schematic, instead of neural, distributed, “momdgical’? Dorner's implicit answer
to this objection is that there is no real diffasenbetween schemas and neural
representations. Rather, the typical schemas obsljoreasoning might be seen as a
special case of a neural representation - a vergliki, clear-cut and neat neural
arrangement the system arrives at by abstractiocegses. Such localist schemas are
prevalent at the 'higher', more abstract levelsogfition, but they are not necessarily
typical for mental representations. The majoritysohemas might look much more
‘scruffy’, sporting vague links and encoding ambigs. While abstract, localist
schemas might often be translated into sets o fille. clauses of a logical language),
this is not true for the more distributed schenm@esentations of the lower levels of
perception and motor action. (Theoretically, evemural network with a finite

105 structural similarity is only one of many perspectives. Ottagproaches to capturing

similarity include measuring the differences betwée&o instances (contrast model: Tversky
1977), spatial organization (Shepard 1957), aligntnmeodels (Gentner and Markman 1995),
transformational models (Hahn, Chater and Richard®@d3) and generative methods (Kemp,
Bernstein, Tenenbaum 2005). None of these has legassed in the context of the Psi theory.
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accuracy of link-weights can be translated in adfetules—but this set might be
extremely large, and its execution using an intgr might be computationally
infeasible.)

This is not a new idea, of course; it has oftennbasgued that there is not
necessarily a true antagonism between rule-basst@msyg and distributed systems
(Dyer 1990). Instead, rule-based representatiomgust a special, more localist case
of a distributed representation. It might even barggued that because there are feats
in human cognition, such as planning and languadpch require compositionality,
systematicity and atomicity, there has to be sudbcalist level even if cognitive
functionality is best implemented in a distributetbde. Indeed, this is a point
frequently made for instance by Fodor and Pylyski®88), and more recently
Jackendoff (2002), who argues that the distributggresentation must implement
localist functionality to satisfy the constraintsgosed by language.

The ability of Dorner's neurosymbolic framework toapture (at least
theoretically) both distributed and symbolic regmsitions using the same elements
sets it apart from many other cognitive architessussuch as Soar, which is symbolic,
and Clarion, which is a hybrid that utilizes symband sub-symbolitayers But
even though it is not based on productions, theerseh representations bear
similarities to the propositional network represgions in Anderson’'s ACT-R. Like
in ACT-R (see Anderson 1983, p. 47), the Psi thexirggests three kinds of basic
representations: temporal or causal sequencesote(protocols/episodic sequences
in Psi), spatial images (compositional schema hitias with spatial relations) and
abstract propositions (abstractions over and indeget of perceptual content). But
unlike Anderson, Dorner does not attempt to mirhie $pecifics of human memory,
so he imposes fewer restrictions: for instanceA@T-R, sequences are limited to a
length of about five elements. To encode more eh¢sn¢hese sequences will have to
be organized into sub-string® While this restriction is helpful in reproducinignits
of random access to elements in short-term memibris inadequate for well-
rehearsed long-term memory sequences that arergyitiiaked from each element to
its successor, like the memorized alphabet. Thehesiry is currently unconcerned
with the problem on recreating tepecificsof human memory, instead, it attempts to
present the technically most simple solution topgheblem of hierarchical memory at
all.

Dorner takes neither a completely pictorial peripe@®n mental representation in
general, nor a propositional point of view—but widspect to mentdmages he
might perhaps be called a pictorialiBictorialism (Kosslyn 1980, 1983) maintains
that mental representations of imagery takes onfahe of pictures, and mental
images are seen like visual images. Dérner pointstitat the representations may
include abstract and ambiguous relationships (filearby” instead of “to the left of”
or “to the right of”) that can not be directly andiquely translated into an image.

106 This restriction is often abandoned in newer ACTrRdels. Limitations and individual
differences of working memory capacity are als@®mwfexplained by differences in available
activation (for retrieval bgpreading activationsee Anderson 1984). (Daily, Lovett and Reder,
2000, 2001). Soar does not use any structuraldimit working memory at all and does not
model this aspect of human cognition directly. (Mguand Lewis 1999)
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However, he suggests to implement a visual buBad(leley 1986, 1997; Reeves and
D’Angiulli 2003) as arinner screen” (Dorner 2002, p. 121-122), where a pictorial
prototype might be instantiated using the more gdnabstract representations—by
filling in the “default” with the highest activatio(Dérner 1999, p. 604-611). This is
consistent with Kosslyn's suggestion of two levefsmental imagery: a geometric
one, which lends itself to image manipulation, amdalgebraic one that captures
abstract relations and descriptions (Kosslyn 1994).

This approach is different fromdescriptionalism (Pylyshyn 1984, 2002),
according to which mental images are just the pcbdiimanipulations of knowledge
encoded in the form of propositions. Propositioesséntially: rules) are the basic
element of knowledge representations, and defiree khowledge level, which
represents actions amctionsof knowledge and goals, and the symbolic leveiictvh
codifies thesemantic contenvf knowledge and goals. (On the physical levedséh
rules may be represented as neural networks ndasshe Decriptionalism tends to
identify thinking with linguistic productivity ands still widespread in Cognitive
Sciencel®

In a pictorialist framework, one would expect theseuof sub-symbolic
representations on all or most levels of the h@@mar and yet, Dorner's
implementations of world models are symbolic, ia #ense that the representational
entities define semantic units, as opposed toiliged representations, where an
individual representational entity does not referat meaning on its own, and the
semantics are captured by a population of entities which they are supervenient.
Beyond the current implementations, the Psi thdants at the incorporation of
distributed and fuzzy representations—but mainithatlowest levels of the cognitive
processes, and these receive relatively littlentitie in Dérner’s descriptions. Above
that, all link weights are set to zero or one: Xilm networks are basically the

107 According to Kosslyn, this is reflected in diffatevisual processing modules in the brain:
he separates the visual buffer, the attention win@ehich selects a pattern of activity), the
cortical visual systems, the ventral system (whichintains object properties), the dorsal
system (which deals with spatial properties), thgoaiative memory (which integrates all of
these), an information lookup subsystem (whichiee@s information about the most relevant
object in visual attention), and attention shiftisigh-systems (to direct the attention window).
Based on his account of alternate processing of gg@mand abstract representations, Kosslyn
predicts that image operations which depend on gagnare faster than it would be expected
if the processing takes place using purely absttestriptions, which is supported by mental
rotation experiments (Shepard and Metzler 1971).tlignother hand, where Kosslyn argues
that the imagination of larger images takes maret{Kosslyn 1975) because of the greater
level of detall involved (Kosslyn 1994), propositadists may answer that ‘larger’ images are
simply more prominent and associated with moret tacdowledge (Pylyshyn 2002, p. 163).
Further arguments in the debate between pictaisatind propositionalists are given in Tye's
“The imagery debate”, which itself tries to idepti# middle ground (Tye 1991).

108 gejentific discussion tends to take place in thienfof a (symbolic) language, and since
Wittgenstein (1921), thinking is generally quitdesf equated with linguistic productivity. As
Bertrand Russel (1919) has put‘ithe habit of abstract pursuits makes learned marcim
inferior to the average in the power of visualizatiand much more exclusively occupied with
words in their ‘thinking’,” and thus, they tend to downplay or even negleetrtie of non-
lingual, visually or spatially oriented aspectdtodught processes.
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embodiment of a rule-based system. The perceptysterm in Psi agent
implementations rely on a fixed number of levelmsisting of clear-cut visual
situation concepts that are resolved into clearvigital object concepts which in turn
consist out of clear-cubestalts(Koffka 1935), which are made up of line-segments.
On each level, the individual features are orgahaspor-linked chains, with the first
elementsubconnected to the parent. This is hot necessariggtiction of the theory;

| believe that these simplifications mainly servee tpurpose of illustrating an
otherwise too untidy set of algorithms to the reade

To encode links in scripts, Dorner ugas/ret-links, which he describes as causal
relations. This way, events are ordered and atsHrae time, the links reflect, in
which way they cause one another. This is condistdth other proposals in
Cognitive Science (for instance Cheng and NovicB2)9where it is suggested that
the strength of a causal inference reflects thdadvidity of an event leading to an
outcome. Indeed, this is what the links semanticaflect (because there strength is
adjusted to model probablities of transitions frome event to another). Yet, there
might be cases in which causal relations diffenfittie probability of transitions. For
instance, when storing a melody or poem, a sequehetements might predict the
successor extremely well (because the melody amgdlem are the same each time).
Yet one would not argue that the elements of a dyelmr poem would cause each
other - they just happen to be ordered in that elecg, they are neighbors on the
time-line within a thread of a protocol. It seengsidable to have representations for
cause-effect relations different from those forghéiorhood relations, even though
these often correlate, and the Dérner model cuyr@mtkes no provision for that. As
it is, thepor/ret-linkage in protocols just marks a successor/presimr relationship,
and not a causal on®or/ret would attain the semantics of a causal link omly i
contexts where it is used to retrieve causal @tatiips, for instance during planning,
where the system may strive to attain a goal $@¢odty marking preceding situations
as sub-goals.

A more realistic representation, one that couldeast conceptually, be extended
to noisy environments with continuous feature-spacwill ask for several
enhancements:

1. The departure from the node chains in favoarbitrarily por-linked graphs:
Currently, both the memory protocols and the objescriptions tend to be too linear,
which, by the way, seems to be a classical promi#im scripts, as already noted by
Schank and Abelson (1977). If tip@r-relation is used to connect adjacent features,
then a single chain will represent an ordered ilisttead of an arbitrarily ordered set.
Such an ordered list is adequate for simple pléng, makes it difficult to test
perceptual hypotheses in the order of availabiityfeatures (instead of the order
specified in the list). Also, to facilitate pardllgrocessing, an unordered set of sub-
hierarchies is more adequate than an ordered list.

2. The introduction oflifferent link weight¢o mark favored test and/or activation
orders for individual features: Between a fullyeirdonnected set and an ordered list
of features, there may exist a continuum, for insta a preferred order of features or
plan elements that can be overridden by circumstambis may be represented by
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using weights of less than 1.0 as parameters giahdinks: the most preferred order
would be represented by high link weights, and comralternatives by lower link
weights. In a similar fashion, different weightesiblinks might indicate the
significance of features in object recognition aodn, i.e. a feature which is strongly
sublinked to an object would be highly significantri@cognition or interaction with
this object, while a feature with a wealblink is less relevant and less likely to be
used for recognition and action.

3. The introduction of almost arbitrarily marigvels of hierarchy: Dorner’s
current implementations utilize fixed compositiondlierarchies for object
representation. For instance, in protocol memosgrehare six levels. The protocol
marks the highest level, followed by the situatidasgel. Situations consist of objects
which consist of shape&éstalty, made up of line segments and, on the lowest,leve
pixel arrangements. Beyond the implementation, BOmaintains that objects are
defined as compositions of other objects, with taabily many levels of hierarchy.
Implementing this requires dealing with many subhbems: The revision of
hierarchies needs to preserve the semantics dkdelabjects, beyond the revision
itself. Also, it is likely that hierarchies can loece recursive, and the algorithms
working on the representations will have to be abldeal with that. Getting dynamic
compositional hierarchies to work on real-world gegitual content will pose a
formidable technical challenge.

4. The use oflexible hierarchies: Depending on the context, objectshinize
composed of a certain set sdibobjects at one time, and of children of thesé
objects at another. For instance, a human body easecognizable by a silhouette
including a head, a rump, extremities and so oth) thie head being recognizable by
the shape of the skull and the facial features. diifferent context, if for instance only
an extreme close-up of the face is available, theemrmay suffice to recognize a
human, but the overall composition of the humahagiktte bears no relevance.
Therefore, hierarchies will often have to be getsgtad hocdepending on context
and can probably not be guaranteed to be consisténbther hierarchies.

5. Working with hierarchies ahixed depthlf objects may be composed of other
objects, the distance between any given objectesgmtation and the associated
sensor/actuator level is unlikely to be be uniforfnhierarchies are constructed
depending on contexsubrlinks may cross several levels of hierarchy ateonc

6. Methods for expressing and working withations between featuregithin an
object. Dérner describes the use of alternativelssaibjunctions, the latter as a make-
shift replacement of conjunctions (Dérner et al020p. 65-66). On top of that,
mutual exclusions, cardinalities and feature spaggending on multiple attributes
will have to be included, for instance, to représeolors depending on multiple
receptors.

7. Context dependent relationships between featufesa set of features
N ={nl, nz} compositionally defines an objept by sul( p pof n, p)) (i.e. both
features together make up the object), there magnio¢her object) that is distinct
from p but defined by the samdusing sul( p n); sub p p (i.e. one of the features
is sufficient for the object). Obviously then, tper-link betweenn, and n, needs to
be treated as relative [ as it only applies in the context stil p po( n, p)), not
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on the context of). In other words, we need a way to expressrih# por-related to
n, with respect tg.

8. The inclusion of different neural learning megisans. While binary linked
representations may be treated as discrete rudedsvalued links require neural
learning. Needless to say, all algorithmical pagadi used on a single representation
need to be mutually compatible.

9. Complex schematic representations are not adjuiir a single step, but over
many perceptual cycles; we almost never learn nelwersas, rather, we modify
existing ones (Rumelhart and Norman 1981). Thysesentations have to be stable
during knowledge retraction and modification; thgogithms processing them need
to possessiny-time characteristicéDean and Boddy 1988; Zilberstein and Russell
1992).

Deriving more detailed models of the theory by agtag the means of Psi agents to
cope with more realistic environments and to exténadr problem solving capability
involves generalizing the representations, fromeamar less binary linked trees into
multi-layer associative networks of neural elemeffitdis amounts to removing a lot
of the current “neatness” of the model and replgéirwith “scruffiness”, the clean
and simplistic nested chains of nodes may eveptuzve give way to partially
ordered, heavily interlinked quagmires, and theadyics of these representations will
not be held in check by centrally executed procesifior retrieval, execution and re-
organisation, but by global and local constraints the exchange of activation
between the representational units.

It is clear that the short list of challenges thétave just given calls for a quite
formidable research program. The current set ofesgmtational mechanisms, as
implemented in the models, might be seen as sdififplto support the other parts of
the theory.

Dérner’s theory has in many ways been construotgddbwn to explain how
symbolic cognitive processes may be expressed métiral elements. Thus, one is
tempted to hard-wire some aspects directly intoatpent, instead of implementing a
mechanism that brings them forth on its own. Thisistimes results in artifacts in the
theory. For example, DOrner’s object recognitiolieseon an explicitly defined level
of Gestalts these are directly implemented within the accomation procedure (p.
213). There is no doubt that Gestalts play an ingmbrrole in visual perception, but
does this mean that we have to implement them?eRabime would expect them to
emerge automatically when a multi-layer network tigined over visual input
according to a sparseness and stability doctringnig< and Kuger 2006). In other
words, Gestalts are just an emergent by-produdbwfentropy encoding of lower
level visual features at higher levels in the pptaal hierarchy. They do not need any
extra treatment beyond a mechanism that seeks nomime entropy when storing
information in a feed-forward network.

This accusation of too much “neatness” with respieatepresentations is not a
fundamental disagreement with DornertBeory, it applies only to the given
implementations. In many respects, Dorner has éyrealded a lot of “scruffiness”,
for instance by using the emotional pathways asulabors of cognition. (Note that



185

LeDoux, 1996, has termed them as “quick and digkbrtcuts to describe their
influence on cognitive processes—and Dorner’s theaptures that role well.)

The representations suggested by Doérner are reaiye simple, elegant and
uniform. They do have some shortcomings, howevet,with one exception these
may be remedied easily:

There is no proper mechanism to express the pasédigee. Like in ACT-R
(Anderson 1983, p. 49), temporal strings represetérs, not intervals, and
the distance between events has to be expressadadilitional attributes.
Dérner suggests using the weights of links betwaertessive elements in an
episodic protocol to mark the temporal distancevben these elements, but
this conflicts with the relevance of the string,igéhis indicated by the same
weights. This may be tackled using additional aatiohs, however. In the
current models, there is no need to deal with proppresentation of time,
because the environments are characterized byetisevents.

A more thorough approach to representing time wdlt only have to deal
with ordering elements in a protocol relativelyeiach other, but also with the
connection of events tdurations such as ‘internal clocks’ that are either
linked to short-term or circadianic oscillatorss8) theabsolute distancesf
events to key events may have to be stored. Clgantyper representation of
time is a very interesting and worthwile researmgpid on its own, and will
require quite some effort to implement.

Elements in strings are currently only connectedht&ir predecessor (using
por/ret-links); only the first one is connected to the grdr@ub/suj. If it is
necessary to backtrack to the parent element dymiogessing (for instance
to find out that “March” not only is the successor‘February”, but that both
are members of the list “Month”), the list has ®tbaced to the first element,
before the parent can be identified. A straightfanmdvsolution might consist
in adopting the strategy of ACT-R (Anderson 1983,58) to connect all
elements, albeit weakly, to the parent.

As mentioned above, there is no mechanism for ogies that would allow a
straightforward realization of conceptual relatioips as for instance
suggested in Ross Quillian’s classical paradigmil(@uou 1968), which is
built upon the relationBas(partonomic)can (instrumental) ané-a. The Psi
representations do not know ‘is-a’-links. Here,rbaring ideas from ACT-R
might pose more serious challenges, because wigkstin ACT-R may be
expressed, they need to be manually coded. Thiflisnwith the Psi
theory’s attitude of completely autonomous learniifg ‘is-a’-links were
introduced, Psi agents would need to be equipp#u agitegory learning and
mechanisms for representing feature inheritance.

In representational paradigms (Sowa 1999), “isiakd play either syntactical or
semantical roles. For instance, in ACT-R models, tlumber of attribute slots per
concept is limited to a small number (five to sevigpically). For the retrieval of a
concept, all of these might be used—ACT-R placssang limitation on storage, but
no limitation on retrieval (Rutledge-Taylor 2005)p, in order to add more features to
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a concept, these have to tmherited from other concepts, and “is-a” delivers this
inheritance. In Psi, there is unlimited storaghe humber of links between concepts
(and between concepts and their respective featisresbounded. On the other hand,
the retrieval is limited to the (perhaps five tovesg) features with the strongest
activation and linkage. The activation of thesetdezs will depend on the current
context and is determined by activation spreadiagfneighboring elements, and the
width and depth of activation will depend on th&iegs of the cognitive modulators
activation (width) and resolution level (depth). Because of its unlimited
storage/limited retrieval paradigm, concepts in &si have an arbitrary number of
relevant features. Yet there is another syntactwal for “is-a’-links: if they are used
for inheritance, they allow the centralized storafiéeatures that are shared between
many individuals. So, instead of storing all featurthat allow recognition and
interaction with every dog along with the concepuescription of that very dog, a
type concepfor ‘dog’ could hold all commonalities or defaultgperties, and the
individual concepts will only need to encode thé&fedences from the prototype
defined by the type.

Semantically, “is-a"-linked type concepts allow seaing about generalities and
abstractions that are helpful for planning andcimgition. Dérner suggests answering
this requirement by reducing the resolution of vdlial representations, until they
become prototypical; different individuals now ntatbe same prototype, because the
constraints that distinguish individuals are rethx&@he neglect of details is, in a
nutshell, Dérner’'s approach to abstraction in gaihgsee Dorner 1999, p. 126, 135,
183, 222, 571). It is questionable if thmissionof details is a satisfactory solution in
all circumstances, rather, these details shouldeplacedwith contextually suitable
generalizations (their super-categorié®).

This brings us to another potential shortcomingereéhis no strict conceptual
difference between individuals and types in the tRebry, and | do not think that
Dérner acknowledges the need to make a distindt@ween individuals and classes
of identical looking. This might be a shortcominfjtbe current state of the theory,
because there is a big difference in the way hunteee instances of the same
individual that looks differently, vs. differentdividuals which happen to have the
same properties. It is conceivable to have twoviddials which share all their
properties - not physically perhaps, because irctse of material objects they might

109 fact, there is much more than one sense tadtien of abstraction: we may refer to

1. categorial knowledge, which is abstracted froqpegience

2. the behavioral ability to generalize over instm

3. abstraction as a summary representation (whioteases the likelihood of re-construction of
this representation in the future)

4. abstraction as schematic representation, whioteases sparseness (as for instgecasfor

the abstraction of threedimensional geometricalrasgntations, Biedermann 1987) or
exaggerates critical properties (Posner, Keele 188®des, Brennan, Carey 1987; Barsalou
1985, Palmeri and Nosofsky 2001)

5. abstraction as flexible representation (so #reesdescription can be applied to a variety of
tasks) (Winograd 1975)

6. abstraction as abstract concepts (detached ftoysical entities, metaphysical) (Barsalou
1999; Paivio 1986; Wiemer-Hastings, Krug, Xu 2001)
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have difficulty in occupying the same place in spaand time - but in our
imagination. These individuals might remain distiras long as they are different in
their identities. In the same way we can imagingab which are extremely different
in every respect, but which are conceived as bemg and the same, because they
share their identity. The crucial difference betwekfferent occurrences of the same
individual and different instances of like objedssobviously not perceptual, but
representational. What makes up this differenceepresentation is the property of
identity. Identity can not be perceived - it iseature imposed by the way objects are
stored within the cognitive system: occurrenceghef same object have to share a
‘world line’, a thread in the protocol, in other wig: they are different descriptions of
an object within the same biography.

For instance, it is (in the current implementatjoimpossible for an agent to
represent the difference between meeting the sabjectotwice under different
circumstances and meeting two different objectsh whe same properties—the
identity of objects hinges on distinctive featur&dentity itself, however, is not a
phenomenological or empirical property that migatdirectly observed by checking
features and locations of objects. It is an “essénd objects, a property that only
applies to their representation. To say that tweahinstances share an identity does
not necessarily imply that they have to share aayuies beyond that identity. (It is
for instance possible to express that a certaihamed frogs a prince. In this case,
we are expressing the belief that the frog andptivce somehowghare a biography
that there is some operation—perhaps performechlgvi witch—which has applied
an identity-preserving transformation to one or dtieer.) Technically, by declaring
the identity between two object instances, we awpressing that in our
representation, there is a common protocol threathese objects. Conversely, if two
objects share all of their propertiesceptthe continuity of their protocol threads, they
remain two distinct individuals (as in: “the eviiteh has replaced the prince with an
identical copy of himself, which shares even hisnmodes”). If we accept that
identity is not a property of how things presemrtiselves to a system, but a property
of how the system may represent these things, Wex@éd to equip Psi agents with a
way to associate identical object instances (fatainces in perception) with their
individual protocol threads (“biographies”), andkeep similar looking objects that
are distinct on separate protocol threads. Senalytithis again amounts to an “is-a”
link; the standard link typep¢r, ret, sub, syrare semantically incompatible to mark
“identical, but stored in a different position metnetwork.”

Currently, Doérner takes two different approacheshwiespect to individual
identity. In the Island simulation, all objects ept the agent are immobile and can
thus be distinguished by their location in the emwiment. Learning, on the other
hand, applies to all instances of objects shatiegsame properties, and the challenge
consists in narrowing down the set of distinctiveperties to those that separate the
objects into similarity classes with respect tdrtirgeraction. For instance, rocks may
look slightly different but react similarly to attgpts to hit them (they fall apart) or to
ingest them (they resist), and the agent will havénd those properties that separate
rocks from piles of sand or trees. All objects mkevant only as members of types,
and instances of these types are not associatbd'biitgraphies”, but with locations



188 The Psi theory as a model of cognition

that make them distinct. In the “mice” simulatiamhich does not feature immobile
objects but only mobile agents, each agent is méized as different, the interaction
with each one is recorded, and no inferences adenfram the experiences of the
interaction with one agent with respect to oth@isus, in the Island simulation, all
objects are not individuals, but indefinite typgsthe “mice” simulation, all objects

are individuals. A simulation that combines mob#dad immobile objects with

consistent interaction histories will require eqiipg the Psi agents with a way to
represent both aspects, and to switch between Wienever the need arises.

The omission of a typology might also make it diffi to assigrsemantic rolego
represented entities, and to properly addresfaee problen(see below).

Semantic roles are usually discussed in the cont#xtnatural language
understanding—they were introduced in the contéxgjemerative grammars in the
1960es —, but they are crucial when representitigatidns with agents, actions,
instruments aneffectedchanges. Typical examples of role designationgRoavty
1989):

- Agents they are part of situational descriptions, anglythre the cause of an
action that is described in the current situatidname. In a stronger sense,
agents may b&tentional that is, they are interpreted in terms of “intdin
volitional states, which relate to the action. (Eaample, someone throwing
a ball.)

- Patients are objects of actions, in the sense that somgthappens to them,
and that they are affected by this. (For examplejeone the ball is thrown
to.)

- Experiencersare participants who are objects or observeextbns, but not
affected (changed) by them. (For example, somedimessing others playing
ball.)

- Themesare participants that undergo a change in stafosition as part of
the action, or which have a state or position imsgntal for the action. (For
example, a ball being thrown.)

- Locations are thematic roles associated with an action ihatlated to a
place.

- Sourcesare objects from which motions or transitionsqared.

- Goals are objects where motions or transactions commenc

These role descriptions are neither universallyea@dron in linguistics, nor are
they exhaustive. For instance, Filmore (1968) wigtished just five basic roles:
agentive, instrumental, datiy@peing in motion as effect of the actiotgcative and
objective Jackendoff (1972) uses jushuse changeandbe while Frawley (1992)
suggested four basic classes of roles with threecages eactogical actors(agent,
author, and instrument)pgical recipients(patient, experiencer, and benefactive),
spatial role (theme, source, and goafjpn-participant roles(locative, reason, and
purpose). Some work in Artificial Intelligence s@gis much greater detail in the
specification of roles, for instance, Sowa suggkedt® thematic roles (Sowa 1999).
The Upper Cycontology (1997) of Lenat’'s encyclopedic knowledgystem uses
more than a hundred thematic roles. Some approashel as FrameNet II, even
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define roles relative to each situational framethsr number ranges in the 600s (as
of August 2006).

Does the Psi theory with its partonomic hierarshéed subjunctive sequences
have the necessary expressive power to convey tliss?—The answer really
depends on the view being taken. First of all, sithere is no inheritance relation (in
ACT-R provided by “is-a”-links), roles can not silypbe definedper se—only
individual situational frames can be expressed.oke rcould then be seen as a
disjunction of all situational frames of the sargpet, with possible abstractions by
omitting those features that are not distinctivedlh instances of the roles. Thus, the
role would be a generic frame thtcommodateall its instances. But without a way
of inheriting the properties of the generic frarnedescribe a new, specific situation,
such an approach is of limited use.

The lack of feature inheritance from one repregemal structure to the next also
makes it difficult to deal with partial changes situational frames; this is, for the
most part, the infamouframe problem how should the effects of actions be
represented in such a way that it can be inferredt\mas changed and what remains
after a sequence of actions has taken place (MoZamd Hayes 1969; Pylyshyn
1987; Shanahan 1997)?

Dorner circumvents this problem by using compléigasion descriptions (D6érner
1999, p. 205), interleaved by actions. This britigee serious difficulties: first, in a
complex, open world, complete situational desavipgi are usually not feasible, and
complete hierarchical descriptions are not possli#eause what would be the proper
root element of an all-encompassing situationah&a (In Dorner’'s simulations, it is
usually a location defined by the visual range bf tagent.) Second, this
representation does not specify whigdrticular change of the situation was effected
by the action, and which other changes where theltref other actions and events
(dependency analys3isTherefore, it is also not possible to expresd Heveral agents
effect several independent actions at the same t#md third, if there are multiple
changes, it may be impossible to imfenich partof the previous situation turned into
which part of the new situatio®

It seems inevitable that Psi agents will have toade to represent partial
situations as parts of situation-action-situatiopléts before the frame problem can
be addressed in any way; the remainder of thetgitugthe part that is not affected
by the particular action) will have to lireheritedfrom a more general frame, and the
partial situation will have to be linked to its exgosition within the more general
situation description.

Next to the question if the expressive power of Bw theory's representations
sufficestheoretically it is (perhaps much more) important to know whketthe Psi

110 n Al, several methods have been successivelyldesd to deal with the frame problem,
especially the Situation Calculus (McCarty1963), STR(Fikes and Nilsson 1971) and the
Fluent Calculus (Thielscher 1999) along with FLUXhi@lscher 2004). Discussion of the
application of solutions of the frame problem talreorld situations, for instance robotic
agents, can be for instance be found in Reiter (12001), and Shanahan and Witkowski
(2000).
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agents are equipped with sufficient means &mquiring these representations
autonomously: remember that the Psi theory is nomngrily concerned with
specifying an expressive language (like ACT-R apdr} but it defines an agent that
explores and learns on its own. Because of thetdiniabilities of current
implementations, their grossly simplified simulatiovorlds, the simplistic learning
methods and inadequacies in the implementatioysati@mpt to answer this question
would be extremely speculative.

But even though we have seen some possible limiisnaany issues where the
answers of the Psi theory to the questions of sgmtation and knowledge
management are fragmentary, there is a lot to tokisdavor of its approach: It is a
homogenous neurosymbolic formalism, which has tmeessfully applied to the
representation of objects, episodic knowledge dadsp and which has been shown
to be suitable for autonomous reinforcement legnamd modeling the agent’s
simulation environment. The Psi theory seems tosbecessful in addressing the
problem of symbol grounding, and to represent dbjewith respect to their
affordances. With its “unlimited storage, limitegtnieval” approach, it provides a fast
and cognitively plausible method for building ars@dative memory. Last but not
least, the Psi theory is a work in progress. Bezadissrepresentational apparatus is
surprisingly simple and clear, it may serve as adgstarting point for incremental
extensions in the future.

2.4 Artificial Emotion and the Psi theory

Between 1960 and 1980, the Japanese psychologsarnda Toda designed one of
the first artificial life scenarios—thiingus eaterg¢Toda 1982). In an attempt to get
outside the laboratory paradigm of behaviorist psjy@gy, Toda wanted to look at

individuals in a complete, dynamic environment,hwat multitude of tasks that were
to be tackled at once, with ever changing demawith, situatedness and persistent
environmental and social interaction. In order itopdify the domain, he invented a

game of robotic miners, which roam the distant gtafaros, searching for uranium
and living of fungi. If the human subject controdi the robot is replaced by a
computer program (something which Toda suggestédiiogunot carry out), we are

facing a challenge for a sophisticated agent cbatahitecture.

Toda suggests that the fungus eater agents wil tabe emotional in order to
survive, because the environment, which includesging obstacles and competing
agents, would be too complex for a straightforwalgbrithmical solution. Toda does
not really distinguish between emotions, motivatarsd behavior programs—he
subsumes these under the temgesand distinguishebiological urgeg(like hunger),
emergency urgesstartling, fear and anxietyyocial urges(facilitating cooperation,
social coordination and social status) amdjnitive urgeg(especially curiosity, and
acquiredurges). Todas concepts have inspired a numbersefrehers to extensions
and further development (Wehrle 1994; Pfeifer 190fH¢é 1998).

Dérner’'s model of the Psi theory, especially ingisnd implementation, has quite
some semblance to Toda's ideas: here, the tasler(gte human subjects and
computer agents) consists in controlling a robotsé@arch for ‘nucleotides’, food
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sources and water. And DOrner even proposes sinniggs to solve the Island game,
like in Toda’s blueprint, there are ‘biological’ges, cognitive urges and social urges.
By designing an agent archictecture that can bectijr compared to human
performance in the Island simulation and that caenebe fitted to the problem
solving strategies of different personality typéfioman subjects (Dorner et al. 2002,
Detje 2000, Dorner 2003), Dorner has become onthefthe first researchers to
create a validated computer model of human emotioring complex problem
solving.

The growing humber of models of emotion is arguadihg of the most interesting
developments in Al and Cognitive Science within k&t two decades; Dérner’'s Psi
theory is the child of a time of a multitude of apgches to understand the nature,
role, expression and incidence of emotion. Pattiig is due to the growing demand
for solid research in the design and controlbefievable agentgReilly 1996) for
character animation or behavior simulation in cotepgames and movies, and for
animated avatars and/or dialogue systems (André Ristl 2001) that provide a
human-like, affective interface to technical devices (Cassell et al. @0 Even
electronic toys like Sony’s Aibo robot (see Parkaflin, Kitamura and Lau 2005)
and its humanoid successors are the subject oanasdor affective computing
(Picard 1997). Next to the creation of believalbi@#onal expression, capturing the
role of emotion in decision making may increase dbeuracy of models of human
social behavior (Malsch et al. 2000; Moldt and &eheve 2000; von Scheve 2000;
Castelfranchi 1998; Schmidt 2000). Emotional statdsich range from momentary
reactions andaffects over undirected and persistentoods towards emotional
dispositions also influence perception, planning, task executind memory (Boff
and Lincoln 1988; Pew and Mavor 1998, chapEgk, Kiefer et al. 2003) and are
therefore incorporated in models of task perforrea®elavkin, Ritter and Elliman
1999; Oatley and Jenkins 199&ranceschini, McBride and Sheldon, 2001; Gratch
and Marsella, 2001; Jones, 1998). Many individutierences in behavior are due to
variances in emotional range, intensity and cogingtegies (Ritter et al. 2002, p. 13),
especially when comparing the behavior of adults&ildren (Belavkin et al., 1999).
On the side of neurobiologwffective neurosciencbamasio 1994; Davidson and
Sutton 1995; Panksepp 1998; Rolls 1999; Lane areN2000) has started to lend a
physiological foundation to understanding emotion.

Reflecting the growing recognition of the importanaf emotion for understanding
human behavior (Scherer 1980), a vast number oftiena architectures for
different applications, and based on very diffener@thodologies has been proposed
during the last two decades. | will not give a ctetg overview here, but | will refer
to what | consider to be major developments, sanag put the Psi theory’'s emotion
model into the context of current work. (For moegailed reviews, see Hudlicka and
Fellous 1996; Picard 1997; Ruebenstrunk 1998; Rigte al. 2002; Gratch and
Marsella 2005.)
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In addition to aiding psychological research, mgitemotion into agent architectures
may also havetechnical benefits: adopting emotional modes of information
processing could possibly improve the performantceobots and software agents.
Whenever environments get more complex and more,oppebecomes harder to
define rules that are applicable and efficient lihimteraction contexts that might
arise. Here, adaptive heuristics are asked forchvtgontrol how information is
acquired, processed and stored and which methedgsad for decision making and
action.

Not surprisingly, many authors have pointed out #vaotional architectures are
good candidates for such heuristics, as emotioes falfilling similar roles in
biological organisms (see, for instance, Sloman2]%geifer 1988.) Obviously, the
majority of the immense number of decisions biatagjsystems have to face in every
given moment is not settled by rational reasoniagrhther by more simple, reactive
means, mainly because complex cognitive processestd be slow and require more
mental resources. But the same is true for dedsibat apply to the organisation of
mental processes. The way humans focus their detiba on individual aspects of
objects, for instance during perception, memorizimgplanning, is highly variable
and demands control mechanisms just as much asrgenisation of physical
resources. Emotions may also allow for fast anidiefit evaluation of objects, events
or the potential outcomes of actions with regardh&ir impact on the well-being of
the agent, and impairments in emotional controtesys have grave impacts on our
ability to reason, to react to environmental stimamd to behave in a socially
adequate way (Damasio 1995, 2003). Sometimes iargued that Atrtificial
Intelligence will necessarily have to incorporatéfigial emotion, because emotions
provide indispensable functionality to mental fuocing (Toda 1982, Lisetti and
Gmytrasiewicz 2002, Minsky 2006).

2.4.1 Understanding emotion

Not the least important aspect of the allude dfieiel emotion is its claim to allow a
better understanding, maybe even a functionalistehof this most ‘mysterious’ trait
of being human: of feeling, of experiencing the Mi@nd one’s own actions within it,
of being moved by what is happeningnderstanding emotion is not just a
psychological enterprise, it is also a profoundgduphical endeavor (Griffith 1997;
Goldie 2000; Ben-Ze'ev 2000; Nussbaum 2001; Roh2063; Stephan and Walter
2003, 2004). Thus, building an emotional agent reesiming for rough waters; the
notion that a technical system is emotional souadsitious, if not somewhat
spectacular; it even has the ring of blasphemydayrskeptics.

Psi agents, according to Dérner (1994), do not display emotions. The Psi
theory boldly claims to deliver a functionalist éepation of what emotions, affects
and feelingsare, and if we buy into that claim, then Psi agentdlyehave emotions.
The approach of the Psi theory towards emotiorquige straightforward: Emotions
are explained asonfigurations of cognitionsettings of the cognitive modulators
(resolution level, arousal, selection thresholde raf securing behavior), along with
motivational parameters (thepleasure/distress dimension supplied by the
motivational system, and the current levels of tmges for competenceand
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uncertainty reduction Dorner argues that the behavioraofy cognitive system that is
modulated in this (or a similar way) will lend itk an emotional interpretation by
an external observer—the system may appear joyad, angry, distressed, hesitant
or surprised and so on. If the system is able togiee the effects of the modulation
and reflect on them, it may itself arrive at emnéibcategories to describe its own
states. Precisely because emotional categoriesi@seriptions that refer to such
modulatory settings, emotions do not just coinoidth them, but are functionally
realized as modulatory states. According to Dorfsi agents, by virtue of the
modulation of their cognition, do not just simulagenotion, but are genuinely
emotional.

Because the Psi theory claims to explain what iamsetohave an emotiornot
just to express or simulate it), it is probably tokrown as a theory of human
emotion, even though it deals at least as much wititivation, action control,
representation and perception.

Naturally, the evaluation of this assertion depeadshow we define emotions,
which is a hotly contested topic. Within psycholpthyere seems to be no sign of an
agreement on a consensual definition so far.

Emotions are states of organisms which influenee dhocation of physical and
mental resources, perception, recognition, delimralearning and action. However,
this is by no means a proper definition: the sasrteuie for a lot of other physiological
states that we would not intuitively call emotiosraising or lowering of the blood
pressure, for instance, does affect organismssiméar way, but would not be called
an emotion in itself.

Emotions are adaptive (i.e. the emotional statesrganism is subjected to in a
certain situation depend partly on its history a$pexperiences in similar situations),
and the range of emotional states may vary betwedividuals (Russel 1994, 1995),
but there is evidence that emotions themselvesatdhe product of learning and
largely invariant in dimensionality and expressi@kman and Friesen 1971; lzard
1994). For instance, individuals may learn in whittiations fear is appropriate or
inappropriate, as well what kind of fear and whmensity. But the ability to perceive
fear itself is not acquired, rather, it stems frdm way an organism is equipped to
react to certain external or internal stimuli.

While people do have an intuitive notion of emotitre term is difficult to pin down
in a technical context. We can give examples oftenal states (and would probably
arrive at a list much similar to Charles Darwin,omuggested attention/interest and
rejection, joy and distress/sadness, surprise, fage/anger, and shame as the set of
primary emotions (Darwin 1872), and we distingulsftween emotions and their
physiological correlates, like blood pressure, dogaaline levels or excitatory states
of certain areas of the amygdala (for introducticto the neurobiology of emotion,
see Roth 2000, and LeDoux 1996). We could extemdiefinition by requesting that
these states have to be consciously experiencedhéyindividual, conscious
experience being a difficult notion in itself. Theason for this extension is obvious:
while states like blood pressure and noradrenalenels can usually not be
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consciously experienced, anger and happiness mamgotifhs are not just
physiological events or processes, but certaincisp# certain physiological events
or processes that aegperiencedn a certain way.

Unfortunately, it is possible that anger or happ@are present and influence the
organism without the individual being conscious wbtheir presence. While the
common usage of the term ‘emotion’ refers to “wisdelt” by an individual, it seems
to be acceptable to ‘feel’ without being consciabsut the ‘feeling’ at the same time.
Then, in what sense are states that are not carsdgigerceived but are only
perceivable aspects of physiological states reb&rotion of ‘potentially perceivable
aspects’ is not satisfying either, because of tiféicdty to make clear what
distinguishes something that is not perceivablenfrisomething that is potentially
perceivable without prior knowledge of the mechanisf perception of emotions,
and a model of this mechanism asks for a conceptraftions—which we wanted to
establish in the first place.

The reason for this awkward situation is obviolse term ‘emotion’ refers to
something that is established by introspection atiibution to others; many
psychologists who examined the topic did not even to find a functional
description, but classified common emotional teimtg clusters to reach a taxonomy
(Traxel 1960; Hampel 1977; Schmidt-Atzert and StnéhL983).

Emotions are not physically observable in an orgrianinot necessarily because of
an explanatory gap between mental and physiologicadesses, but because they are
mental states and as such belong to a differeagosay altogether (Frijda 1986).

Here arises a difficulty to define and ascrébéficial emotions We may design a
system that is capable of displaying internal stateat have functions akin to
emotions in biological organisms and that can becgieed as similar enough to
human emotions to support attributions by extewizdervers. But as long as the
relationship between emotions and their physiollgoorrelates and the perceptual
mechanisms is not backed by commonly accepted moitetan not be clearly
established that the system indeed has emotiosigéid of simulating emotions).

Instead of tackling the difficult problem of a cise and all-encompassing definition
of emotion, it may help to look at the classes loéqromena that are discussed in its
context. The research in emotion models may wedilissumed within the framework
of a component theory of emotioaccording to which emotions have at least four
aspects (Diener 1999; Erk and Walter 2000):
- Subjective experience (howféelsto be in an emotional state)
- Physiological processes (neural, neurochemical apHysiological
mechanisms that facilitate emotion)
- Expressive behavior (facial and bodily expressiompvement patterns,
modulation of voice and breath etc.)
- Cognitive evaluations.

The term ‘emotion’, or, more generally, ‘emotionalocesses’, is often—but not
always—used to subsume the whole field of affecfilenomena (Panksepp 1998):
emotional reflexes (especially startling), basab#ans (like fear, anger, joy, sadness
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and disgust), probably more complex and culturatypped emotions (like shame,
pride, envy and jealousy), and undirected moods @uphoria or depression). On the
other hand, many feelings are not emotions—forims#, hunger, pain, itching. They
certainly possess the four above mentioned aspedtsnodulate cognitive behavior,
but are not usually considered emotional. Ratheese¢ feelings are part of the
phenomenology of the motivational system, and ékengh emotion and motivation
are closely linked, emotion and motivation are Uguaecognized as different
formations. In the Psi theory, the difference bemvemotion and motivation is very
pronounced:Motivation determines what has to be done, emotetermines how it
has to be done.{(Hille 1998)

2.4.2 Emotion in cognitive processing and behavior

The emotions of biological organisms have two ampebat affect cognitive
processing: theyonfigurethe mental systems of individuals, and the effecthe
differences in configuration can usually (at lepstentially) be experienced by the
individual. The configurations influence dispositiofor action and perception. In this
sense, emotions act as mechanisms for the distiband allocation of mental and
physical resources of the organism. On the othedhamotions calve aspects of
percepts and conceptthat color, direct and filter perception, imagioat and
learning. (This is the primary perspective the ®P&ory takes towards emotion.)
Emotions may be associated with perceptual andiimadige content, and whenever
this content is accessed, the associations areevetr and add a dimension of
subjective relevance.

In both cases, emotions can perform adaptatiorh tha range of configurations
that applies to certain environmental situationsl @me emotions associated with
certain stimuli can change over time and representaspect of learning of the
organism.

These effects can be modeled in artificial systeantificial emotions may be
certain configurations of information processingtsyns that act as contextual and
structural filters to sense data from the environimend to data derived from these
sense data that represent the external environmesories of previous events,
anticipated future events and imaginations of ahsdstract or fictive objects. Here,
contextual filtering implies that emotions may setontext that is used to decide
about priorities of objects to be extracted fromsgedata, retrieved from memory and
so on. It may also include the choice of propentiethese objects, both propositional
and nonpropositional, that are brought to the #tianof the system. On the other
hand, structural filtering refers to the way infation is made available to the system
(i.e. shallow vs. deep hierarchies, exhaustive hartsfeature sets etc.), based on
emotional parameter settings. Thus, decisions canmade when it comes to
balancing between completeness (which increases ctiraputational cost of
deliberating processes) and brevity (which maycaféersatility).

Emotions may also be seen as allocators of prowgssisources to individual
problems, on the short term by regulating the footiattention according to the
current emotional setting (for instance, by coneaintg on a single object with most
resources, to watch out for specific events, toermass as much of the environment
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as possible, or to spend some time reorganizingrrint representations of past
events). Over time, they may be helpful in decidimbich information is worth
keeping and what kind of representation is to leseh for it.

The primary role associated with emotions condisttheir evaluative function.
Emotions attach a valence to objects, events aed otiicomes of actions by
associating them with values, according to thejpant on the different aspects of the
relationship between agent and environment. Emstioay also order the priorities
of the individualbehavios and actions of an artificial agent. Imagine fustance a
robot that runs out of battery power and might aders slow, but economic
movements first, puts less energy in communicagioth information processing and,
instead of spending much time with deliberation amgloration, shows preference
for behavios that could lead to a replenishing of the batserie

A major difference between the perception of emtiand the perception of most
other mental content consists in the fact that @mst are for the most part
transparentto the individual: they can not be identified astidct entities but rather
are integral, embedded parts of the reality agdsents itself to the individual. In
contrast, for instance ideas can be identifiedeaggomere imagination, in that sense
they are opaque to the inner perception. Emotiikessadness, are much more acute:
it is not as if the idea of sadness is presenteaus the mental scenery itself is tinted
by it. The frame of emotion rests underneath cagmiand is thereby an integral part
of the inner reality of the agent; emotions colod dilter perception, imagination and
anticipation.

When emotional filtering reduces the complexityanhilable data according to the
situation and the needs of the system, then theitbeg resources of the agent may be
put to better use—at the price of reducing the spzfcreachable solutions (Pfeifer
1988). When cognitive resources are limited and eéheironment is complex and
dynamic, emotions may improve reaction times. Tdlso implies that emotional
filtering is useless, even detrimental to succésghe cognitive resources are
sufficient for a complete processing, for instameea limited microworld domain,
such as a game of chess, or if the algorithms ddewefit from modulation. In real-
world contexts or more complex environments, howewube available sensor
information may exceed the processing capabiliteas] a multitude of different
representations could be used for internal reptatien of external objects and
events.

Emotions may come into play at different levels mdrception. They may
configure the early levels of perception to look $pecifical patterns first, if these are
somehow correlated to the current task or motivatid the agent (motivational
priming). Thus, objects that are relevant to theragcan be identified faster than
others. Second, objects may be given emotional tags specify which of their
properties are relevant and should be given coregida, which objects are desirable
or threatening and therefore deserve attention,tawards which objects the agent
remains indifferent and that might therefore reguéss detail in their representation
or can be cancelled out altogether.
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This does not only apply to the perception of endérobjects, but also to the
perception of internal representations. Here, esngtican direct which aspects of
these representations should be given more detdiich extensions of the
representations should be retrieved or generateavimre the resolution of the
representation can be reduced.

If agents have to coordinate sevebahavios at a time, thesbehavios may
independently consult the current emotional stedeameters of the system, thus
enabling decentral controBehavios may also examine the emotional tags of
individual objects for decision making. While thisay be not as powerful as the use
of a reasoning mechanism, it is usually much fasteal world objects tend to have
thousands of properties and many possible waykassification. While most of these
are irrelevant for a given task, it makes delibeeaprocesses very difficult. If all data
about all available objects of the current contexé combined in—probably
computationally expensive—mental simulation, itiidikely that the agent is able to
find solutions to real-world planning problems diist kind within an acceptable
timespan. If emotional evaluations of sub-probleas act as fast heuristics of which
objects, properties and representations are rei@rgoromising in the given context,
they might reduce the amount of necessary comput&bi a minimum.

Emotions can also be used to decide which kindemfision making and action is
appropriate in the given situation; factors likariosity’, ‘boredom’, ‘frustration’ or
‘fear’ might interfere with the current deliberatioof the agent and lead to
modification or interruption of the active behavior

A particularly complex domain that greatly benefitsm emotional control is social
interaction (Cacioppo et al. 2002, Adolphs 2003)e Pperception and expression of
social signals relies on fast and intuitive proesssvhich are for the most part not
deliberate. Social emotions do not just improve teenmunication of intentional
states between agents, but also enforce social m@md thus coordinate group
behavior (Frank 1992; Cacioppo et al. 2002; Greang Haidt 2002; Moll et al.
2005).

2.4.3 Approaches to modeling emotion

Architectures that represent implementations afigigl emotions can be classified in
several ways, for instance by looking at the waytons are embedded within the
cognitive system. Their main families can be chi@gmed as follows:

- Emotions act, in conjuction with the motivationgiseem, as main control
structures of the agent. Action control and behagiecution depend on the
states of the emotional component, and deliberagivecesses are only
consulted when the need arises. (This is the appraéken in the Psi theory.)

- Emotions are parts or descriptors of individual-aglents that compete within
the architecture for the control dfehavios and actions. This is the
organizational principle o€athéxisby Velasquez (1997) and in Cafiamero’s
Abbotts(1997). Thus, the emotional agent itself is impdeed as a multi-
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agent system, which makes it easy to model theccaroence of multiple
emotions.

- Emotions are a module within the cognitive architee that offers results to
other, coexisting modules. Control is either distted among these
components or subordinated to a central executiateliberation component
(an approach that has been taken, for instanaheiRECSagents: Schmidt
2000).

- Emotions act only as an interface for communicatigth human users and as
a guise for behavior strategies that bear no siityileo emotional processing.
They might either model emotional states of the momication partner and
help to respond accordingly, or they might just aidcreating believable
communication (for instance, in an electronic shiogsystem).

A second possible way of classifying emotional @ettures expands to theethod
of modelling Common approaches consist in:

- Modelling emotions as explicit states. Thus, thetomal agent has a number
of states it can adopt, possibly with varying isignn and a set of state
transition functions. These states parameterise nibelules of behavior
perception, deliberation and so on.

- Modelling emotions by connecting them directly tonsili, assessments or
urges (like hunger or social needs) of the agénsiifilar approach has been
suggested by Frijda, 1986.)

- Modelling emotional compounds as results of theocodrrence of basic
emotions. Suggestions for suitable sets of prineanptions and/or emotion
determinants have been made by some emotion psgiktd (for instance
Plutchik, 1980).

- Modelling emotions implicitly by identifying the pameters that modify the
agent's behavior and are thus the correlates of the emotions. The
manipulation of these parameters will modify theodional setting of the
agent. This way, the emotions are not part of tig@lémentation but rather an
emergent phenomenon.

Emotions in DOrner's Psi agents are implementedhim latter way: Instead of
realizing them as distinct entities, the agentsnaodulated by parameters that are not
emotions themselves. Emotions become an emergemniopienon: they appear on a
different descriptional level, as the particularywegnitive processing is carried out.
For exampleangeris, according to the Psi theory, initiated by fagure to attain a
goal in the face of an obstacle and is characirimea low resolution level, which
leads to a limited problem solving capacity andleetgfor details. Also, the failure
increases the sense of urgency, which in turn dieplihe activation level, leading to
more impulsive action, and a narrower examinatioth® environment. ‘Anger’ is the
label that we use for this particular, typical dgofation, as we observe it in
humans—and Dorner argues, that if we agree, thisfsonditions were indeed what
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we mean by ‘anger’, it is then perfectly reasonablapply the same label to the same
configuration in an artificial agent (Dérner 1999,561).

The latter two methods—mixing primary emotions, raanipulating modulatory

states—Ilead to fundamentally different models obgoms than the first two. Rather
than explicit events, emotions are understood @asain a multi-dimensional space.
This space is defined by the individual parametieas make up the emotional setting
of the agent (for example, introvertedness, arousaus, time-frame and so on).
Some of these parameters will be global to theesystwhile others can also be
limited to individual emotional sub-systems. Suclmadelling offers a number of

advantages. Apart from the fact that it is quitesely mimicking the way emotions
are attributed to biological systems, it is alsoywell suited to model co-occurring
emotions, because individual emotional areas nagatlap!l!

2.4.3.1 Emotion as a continuous multidimensional sp ace
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Y

Figure 2.10: Dimensions of Wundt's emotional sp@ee Wundt 1910)

One of the first attempts to treat emotion as dioaous space was made by Wilhelm
Wundt (1910). According to Wundt, every emotiontts is characterized by three
components that can be organized into orthogomakdsions. The first dimension

ranges from pleasure to displeasure, the second drousal to calmness, and the last
one from tension to relaxion (figure 2.10), that é&very emotional state can be
evaluated with respect to its positive or negatieatent, its stressfulness, and the
strength it exhibits. Thus, an emotion may be plestsle, intense and calm at the

111 Note that there are emotions that sometimes dncunion, such as anger and amusement,
while others are mutually exclusive, like panic @atedom. This can easily be envisioned,
when emotions are located inside a suitable pamnsgtace. While the areas of anger and
amusement may have areas where they overlap, aadiboredom may be located on opposite
ends of an arousal-dimension.
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same time, but not pleasurable and displeasurdldace. Wundt's model has been
re-invented by Charles Osgood in 1957, with aewaluation dimension (for
pleasure/displeasuredrousal andpotency(for the strength of the emotion) (Osgood
et al. 1957), and re-discovered by Ertel (1965)adence arousal andpotency

Wundt’'s model does not capture the social aspefcemmtion, so it has been
sometimes amended to include extraversion/intramersipprehension/disgust and so
on, for instance by Traxel and Heide, who addedmission/dominancas the third
dimension to asalence/arousamodel (Traxel and Heide 1961).

Note thatarousal valenceandintroversionare themselves not emotions, but mental
configuration parameters that are much closer ¢opttysiological level than actual
emotions—we could call themroto-emotions Emotions are areas within the space
spanned by the proto-emotional dimensions.
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all Motives
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Figure 2.11: Dimensions of emotion according toRisetheory (adopted from Hille 1998)

The emotion model of the Psi theory spans at leastsix-dimensional
continuousspace: Katrin Hille (1998) describesithwhe following proto-emotional
dimensions:arousal (which corresponds to the physiologieaispecific sympaticus
syndromeand subsumes Wundttensionand arousal dimensions)resolution level
dominanceof the leading motive (usually callegsklection threshold the level of
background check&he rate of the securing behavior), and the lefegjoal-directed
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behaviort12 (The sixth dimension is thealence i.e. the signals supplied by the
pleasure/displeasure system.) Anger, for instaisceharacterized by high arousal,
low resolution, strong motive dominance, few backmd checks and strong goal-
orientedness; sadness by low arousal, high reealutstrong dominance, few
background-checks and low goal-orientedness. Theemlions are not completely
orthogonal to each other (resolution is mainly nsedy related to arousal, and goal
orientedness is partially dependent on arousalediy. w

This way, the emotional dimensions are not jusisifeed, but also explained as result
of particular demands of the individual. The statdsthe modulators (the proto-
emotional parameters) are a function of the urgearay importance of motives, and
of the ability to cope with the environment and thsks that have to be fulfilled to
satisfy the motives. As we can see in figure 2ddmpare with figure 1.19, which
highlights the behavioral consequences) a higiencyof the leading motive will
decrease resolution and increase goal orientatiwh selection threshold (motive
dominance), while less time is spent checking fanges in the background; whereas
a highimportanceof the leading motive will increase the resolutievel. Uncertainty
and lack of experiencetask specific competerjcéncrease the rate of securing
behavior. A high level of confidencgdneral competengdncreases the selection
threshold, and the arousal is proportional to taaegal demand situation (urgency
and importance of all motives). Uncertainty is mead by comparing expectations
with events as they happen, competence dependsherrate of success while
attempting to execute goal-directed behavior; tamahds for uncertainty reduction
and acquisition of competence amgesand parts of the motivational system (both
can be motives on their own). At all times, sometives are active, and one is
selected to be théominant motivedepending on its strength (importance), the time
left to satisfy it (urgency), the current selectibineshold and the expected chance to
satisfy it fask specific competerjceThus, motive importances and urgencies are
supplied by the motivational system.

The six-dimensional model is not exhaustive; esglgcivhen looking at social
emotions, at least the demandsdffiliation (external legitimacy signals) and ‘honor’
(internal legitimacy, ethical conformance), whicte anotivational dimensionsike
competencanduncertainty reductionwould need to be added.

Note that in the Psi theory, there is always onlsirggle dominant motive. This
prevents conflicts, but makes it difficult to modide parallel pursuit of non-
conflicting goals. (In the Island implementationhem confronted with a new
situation, agents first ‘play a round of opportunigo see if the available options
allow the satisfaction of other active motives Hesithe dominant one. Then they go
back to the currently active plan. This way, thé &gents can make use of readily
available food source while searching for watet,thay are not going to plan in such
a way as to deliberately include the food sourcth@ir route to a a well. Then again,
perhaps this is adequate for agents without réflecteasoning capabilities, and
language is an enabler for the parallel pursugazis.)

112 |n Jater descriptions of the theory, goal-orientestis replaced by motive selection and
planning behaviors that refer directly to the cotepee and certainty urges.
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Instead of structuring emotion spaces using pratotmnal dimensions, they can also
be described directly, using primitive emotionsutBhik (1994) constructs his
emotion space from such emotional clusters. He estggeightprimary emotions
acceptance, anger, expectation, disgust, joy, &sa@iness und surprise. The emotions
vary in their intensity: strong anger becomes raghjle weak anger is mere
annoyance; sadness ranges from pensiveness toagdeso on (see figure 2.12). At
the point of lowest intensity, emotions are no lkengxpressed and become
indistinguishable. In Plutchiks model, the indivéd's emotional state does not
correspond to a single point in the emotion spdmé, as a behavioravector
Emotions can appear in conjunctions and fggnmary dyads(combinations of
neighboring emotions, for instance, love would beoabination of acceptance and
joy), secondary dyadérom emotions that are one field apart, suchraepwhich is
seen as a combination of anger and joy), tantiary dyads(emotions that are more
than one field apart, like shame, which is intetgaeas fear and disgust). Even co
occurrences of opposing emotions are not imposdibfewill cause a deadlock in the

behavior.
A
Vigilance Adoration
=
Anger Rage - Fear é
£
WA
Sadness
Annoyance .
Apprehension

Figure 2.12: Emotional dimensions according to ¢hik (1980)

A model like this is very difficult to validate, drit does not do much to clarify the
relationship between behavior and emotional coostrdmong the researchers
constructing their models from primary emotionsréhis little agreement on their
nature, their number, and which of them are indpegthary (Ortony and Turner
1990). Ekman suggests anger, disgust, fear, janess and surprise (1992); lzard
(1994) comes up with anger, loathing, disgustrelsst, fear, guilt, interest, joy, shame
and surprise, Oatley and Johnson-Laird use angsgust, arousal, joy and sadness
(Oatley and Johnson-Laird 1987).
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2.4.3.2 Emotions as aspects of cognitive processing

Approaches like the one by Plutchik attempt to ordar notions of different
emotions (Pfeifer 1994), but they usually havéelito say about how they are realized
in the individual, and thus, what the nature ofeamotional event really is, in which
way it is experienced and which function is serbgdt within the cognitive system.

There are several Al architectures that propos®lee this problem by designing
a more general model of cognitive processing, &eth tshow which aspects of the
behavior of the system are emotional. Emotion éngsther as an emergent aspect of
cognition, or at least as a set of functionalitiest can only be properly understood
when embedded into a cognitive system.

In Sloman’s architectural sketch of human cognitiblrCogAff (Sloman 1992),
emotion is seen as a consequence of the way piogdaskes place on the different
layers (Sloman 1981): startling, for instance, esponds to an activation of the alarm
system, and motive conflicts, evaluations, applsigéve rise to primary, secondary
and tertiary emotions (Damasio 1994). Here, prim@motions are seen asactive
alarm reactions, secondary emotions involve bothrdactive and the deliberative
layer13 and tertiary emotions correspond to disruptionthefmeta-management due
to activity on the other layers, leading to lossattention (Sloman 2001; Sloman,
Chrisley and Scheutz 2005) .

Sloman does not explicitly put emotiorto his architecture—in his view, they are
a necessary, and often disruptive, by-product ghitive processing.

Dérner does not emphasize the annoyance of beisgipded by emotional
episodes—he considers them indispensable and biahefispects of cognition
(Dorner and Starker 2004)—but like Sloman, he st®gn as integral to the
architecture, not as a separate layer or modulst ds colors and shapes are
inseparable from objects, emotions areftiten of psychological processes; if action,
planning, perception and memory are taken awayhimgtremains to be studied
(Dorner 1999, p. 565). From an internal perspectiweemotion is conceptualized as

113 As an example, Sloman describes an author atteqpti write a paper: this author is
receiving an urgent phone call, in which issues mised that can not be resolved. A
representation of these issues remains activehdguse they can not be dealt with by means
of the reactive layer, they are passed througlattemtion filter into the deliberative layer. The
deliberative layer has to divert resources to tludlem raised in the call, thus has to pause the
task of writing the paper, which previously took alpdeliberative resources. Because there is
no way to tackle the phone call problem, it is ciged and sent back outside the domain of
deliberation. But because the sense of urgencyinsnaad the issue is not settled, it remains
insistent, and the reactive layer soon sends k bhove the attention threshold. As a result, the
problem is constantly swapped in and out of thébdedtive layer, which greatly impedes
progress on the paper. This processraination may be interpreted as an emotional
episode.—Ilt is interesting to note that the Démedel would describe the episode in a much
different fashion: the phone cafiodulateshe attention of the subject by increasing itsiaab,
lowering its resolution level and raising the raié background checks, and this new
modulation will be unsuitable to attend to the ta$kvriting the paper, which would require a
high resolution level and a strong selection tho&shThus, two very different (but not
necessarily incompatible) processing models of itimgnmay offer alternative explanations of
the same phenomenon: Eventually, in both scenasiesgre looking at authors that are easily
distracted when writing a paper.
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a conjunction of the specifics of these forms afgaisses, for instance, a ‘depressed
mood’ would be a concept featuring low arousal, Iggneral competence, a low
selection threshold, little or no goal-directednasd negative valence. The negative
valence, low arousal and the lack of appetitivertgtion color perception, or rather,
remove a lot of its color, which in itself becomes part of the internal
phenomenology of depressidH. If emotion is seen as an additional component or
module that communicates with an otherwise ‘rationagnitive processor, as for
instance in the emotional extensions to ACT-R (Bdla et al. 1999), and Soar
(Chong 1999, Gratch 1999) it becomes more difficidt capture the internal
phenomenology of emotion, and it is probably hartteradequately depict the
cognitive effects of emotional modulation.

On the other hand, as long as Dérner’s Psi ageatad yet an accurate model of
human cognition (and they are far from it), theyl wot have human emotions, but
Psi emotions. Just like human emotions, Psi emstiaill be modulations of
perception, action selection, planning and so a,decause cognition, modulation
and motivation are different from the original, ttesulting emotional categories may
be quite different. This argument could be extentednimal cognition: while most
vertebrates and all mammals certainly have ematiorthie sense that their cognition
is modulated by valence, arousal, resolution lewel so on, their emotions might be
phenomenologically and categorically dissimilarhioman emotions, because they
have a different motivational system, different mitige capabilities and organization,
and perhaps even different modulators. Likewisé,ag@ents are animals of a kind
different from humans.

2.4.3.3 Emotions as appraisals

Human emotions are an adaptation to a very speeifiironment (Cosmides and
Tooby 2001), and their functional role is sometinrapossible to explain outside an
evolutionary context, for instance in the caseeafqusy (Buss, Larsen, Western and
Semmelroth 1992; Buss, Larsen and Western 1996&sttdj and Buunk 2001),
sanctioning behavior (Boyd et al. 2003) and grigfcher 2001). Many emotions are
not solutions to the engineering challenges posegroblem solving, but to the
troubles of populations of genomes in the wild (Ras 1976), and they are simply
not going to appear as by-products of the procdssesgnitive architectures that do
not explicitly model these troubles.

If models are required to behave specifically l&motional humans, not to
explain how, in principle, emotion works in humatisey tend to take a different
perspective than the cognitive processing appr@achbey treat emotions as pre-
defined categories and explain what events trighem, and how they change

114 Being in an emotional state is not the same asriexmming it (even though one might argue
that a definition of emotion should include its pbmenal aspects). The latter requires the
availability of sense data regarding the modulatbuences, and the integration of these sense
data into a phenomenal self model (McCarthy 19789 just an extensional representation of
the agent within itself, but arntensional self representation: a model of itself as a
representation thing. Metzinger calls this represgon a phenomenal model of the
intentionalityrelation (PMIR) (Metzinger 2000, see Metzinger 2@8®3a discussion).



205

behavior and expression. Models like this are usesbcial simulation with multi-
agent systems (Schmidt 2000, 2002) and for thetioreaf believable behavior in
animated characters for computer games and moMesr@n, Ortony and Russell
2003, Norman 2004).

Roseman (1991, Roseman et al. 1996) has coinetétimappraisalto describe
the relationship between stimulus and emotion;@aisal is a valenced reaction to a
situation, as it is perceived by the agent.

. Causal interpretation
Environment (Goals, Beliefs, Causal Relations, Plans, Intentions)

@l Appraisal #
Dialogue Appraisal Affective Belief
Frames State Formation
@ Explanation

Control Signals

Figure 2.13: The role of appraisals in the cogrigystem (Gratch and Marsella 2004,
p. 11)

In this view, emotions are triggered by a caus#drpretation of the environment
(Smith and Lazarus 1990; Gratch and Marsella 2004) respect to the current
goals, beliefs, intentions and relations of thenagBy evaluating these,feameof the
appraisal and a corresponding affective state @btent are set, which in turn enable
it to copewith the situation. Here, coping subsumes theraateand the cognitive
behaviors with relation to the appraisal: actiomsl &peech acts, as well as the
modification of beliefs, intentions, goals and @aihis way, the agent influences the
external environment (the world accessible by acémd communication) and the
internal environment (its model of the world, alongth its plans and goals) to
address the issues according to their valence amtiext. Appraisal frame and
affective state are the link between external anernal situational stimuli, and the
internal and external response (see figure 2.13).

Perhaps the most prominent model of this categotyased on work by Ortony,
Clore and Collins (1988), because it is easily sethfor the simulation of believable
behavior (Reilly 1996; Bates and Reilly 1992). Tdugthors distinguish three main
classes of emotions with respect to thadject which is either the consequence of
some event, an aspect of some thing, or the aofisome agent. In this regard, they
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are different from the emotion space approacheghnéire relatively indifferent to

the object of an affect and focus on the naturethef affect itself. From this

perspective, the difference between social emot{tims appraisal of the actions of
oneself or other agents) and event-based emotiooge( relief) becomes visible
(figure 2.14).

At the first stage, the OCC model distinguishes éaich group of emotions
whether they are positively or negatively valencied;events this is their degree of
pleasurableness, resentment etc., for agents apjsoval or disapproval, and for
objects it is their desirability, and thus the degof attraction or repulsion.

Event-related emotions are further separated dépgndn whether the
consequences apply to others or oneself, and whtbeevent is already present or
not. Present events may lead to joy or distredf;ipated events to hope and fear. If
the anticipated events materialize, the reactions @ther satisfaction or the
confirmation of fear, if they do not occur, thenetlconsequence is either
disappointment or relief.

Emotions with respect to events happening to otdepend on the stance taken
towards these others—if they are seen positivedgctions may be happiness for
them, or pity (if the event has negative consegegndf the others are resented, then
a positive outcome may lead to envy and resentraemgative to gloating.

Agent-oriented emotions (attributions) depend oretiver the agent is someone
else (who may be admired or reproached), or orfe(iselwhich case the emotion
could be pride or shame).

Of course, appraisals may also relate to the caresemps of events that are caused
by the actions of agents. The OCC taxonomy calls tksulting emotions
‘attribution/well-being compounds’: Here, if onefsi responsible, the reaction may
be gratification or remorse, and if the culpris@meone else, it could be gratitude or
anger.

Every emotion can be specified in a formal langualgg using threshold
parameters to specify intervals of real-valuedalads in a weight-matrix to describe

- for events: their desirability for the agent itsateir desirability for others,

their deservingness, their liking, the likelihoofdtieeir occurence, the related
effort, and whether they are realized,

- for agents: their praiseworthiness, their cognitigkevance, the deviation of

expectations,

- for objects: their appeal and their familiarity.

By setting the thresholds accordingly, the emotimudel can be tuned to different
applications, or to individual variances.

The OCC model is not complete, in the sense thapécifies every possible
emotion (jealousy, for instance, is missing, andhynamotions are not discussed in
detail), but the authors maintain that its extemssostraightforward.
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Valenced reaction to

e

consequences of events actions of agents aspects of objects

( pleased, displeased etc. ) (approving, disapproving etc.) ( liking, disliking, etc. )

focusing on focusing on
consequences consequences / \
for other for self self (agent) other agent

desirable undesirable prospects prospects

for other for other relevant irrelevant
(happy for..,) ( gloating ) ( hope ) ( joy ) ( pride )(admiration) ( love )
(resentment)( pity ) ( fear ) ( distress ) ( shame )( reproach) ( hatred )

fortunes of others prospects well-being attribution attraction
« \

confirmed disconfirmed

'

N/

(satisfaction) ( relief )

grahflcahon) ( gratitude )

@o nfirm. of fea@ (disappoimmenD

( remorse ) ( anger )

prospect-based

well-being/attribution compounds

Figure 2.14: Taxonomy of emotions with respectgpraisal (Ortony, Clore and
Collins 1988, p. 19)

The OCC model is an engineering approach that naistthe emotion categories
based on systematizing our commonsense understpofliemotion. It does not say
much about how the cognitive appraisals are reddizthis is left to the designer of
an architecture for a believable agent.

Another appraisal model, this time rooted in psysfical methodology, has been
suggested by Scherer (1984, 1988). He proposesitinational states are the result of
stimulus-evaluation-check§SECs), which are the equivalent to appraisals and
performed by the human cognitive system.

According to Scherer, there are five major SECsn@lwith a number of sub-
checks:

- novelty (similar touncertaintyin the Dorner model, with sub-checks for

suddenness, familiarity and predictability)

- intrinsic pleasantness

- goal significance (with sub-checks for goal relesgnprobability of result,

expectation, supportive character, urgency)
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- coping potential (similar to Dérnerompetencewith sub-checks for agent,

motive, power and adaptability)

- compatibility (asks for conformance to social noramsl standards, with sub-

checks for externality and internality)

Scherer maintains that every emotion is uniqueliindd by a combination of
checks and sub-checks, and attempted to validage dlim using a database
generated from answers of human subjects to questiigned to the different checks
(Scherer 1993). For a model with 14 emotions, whiehe organized with weights in
a space of 15 dimensions (corresponding to thekshaod sub-checks), Scherer
achieved a level of agreement between his subgectshe model of 77.9%.

Scherer proposes a cognitive architecture with fifferent sub-systems to go
with his emotion model, but his attempt at claseifyemotions has a behaviorist
core—emotions are only relevant as a link betwegareal stimuli and externalizable
responses. Frequently, however, the onset and eledremotional episodes does not
stand in a strong relationship to a triggering endésituation, especially with respect
to undirected, basic emotions, like angst and gxtasich may simply result from
the neurochemical setup of the brain at the timey stimulation of brain areas (see,
for instance, LeDoux 1992). This is also true #ytare bound to a cognitive content
and angst becomes fear, extasy becomes joy. Soawtiwe just have the ‘wrong’
emotion, and a model that binds all emotional stateappraisals of external stimuli
instead of examining the nature of the emotionatesiitself is going to meet a
boundary, beyond which it can not explain its obgaty more.

2.4.3.4 What makes Ddrner's agents emotional?

As we have seen, the Psi theory does not explagtiens as a link between stimulus
and behavior, but as a modulation of cognitionsThéw has gained more ground in
Cognitive Science in recent years, as other reseesdocus on cognitive modulation,
often also calledbehavior moderatior{Hudlicka 1997) ormoderation of cognition
(see Pew and Mavor 1998; Jones, Henninger and CRO®8; Gluck, Gunzelmann,
Gratch, Hudlicka, Ritter 2006), and is also supparby findings in neuroscience
(Erk, Kiefer et al. 2003). The view that the cogmt modulation through internal,
subconscious measures of success and failure, seepgesl in more detail as
competencanduncertaintyin the Dorner model, plays a role in problem sadyiis
for instance taken by Ritter and Belavkin (BelavRd01; Belavkin and Ritter 2000;
Belavkin, Ritter and Elliman 1999), and can be fbuim at least two other
independently developed models (Andreae 1998; 8chi&93).

Yet, emotions can not be explained with cognitive@doation alone—without
incorporating a cognitive content, an object of #ikect, it is impossible to discern
emotions like jealousy and envy. Both are negativelenced affects that may create
a high arousal, increase the selection thresheliljae the resolution level, frustrate
the competence urge and so on—but their real difiee lies in thebject of the
affect In Psi agents, this content is supplied by théivational system. Motivational
relevance binds affects to objects, episodes aadtev

Dérner’'s motivational system is based on a finitenber of urges (or drives; see
section 1.8.2):
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1. Physiological urges (like energy and physical initg}y
2. Cognitive urges (competence and uncertainty reonjti
3. Social urges (affiliation).

Similar categories of drives have been suggestedyogll (1993) and Sun (2003),
and by Knoll (2005). In the Tyrell-Sun model, theypiological urges are callddw
level primary drivesthe social urgekigh level primary drives-‘high level’, because
they require a cognitive assessment of a sociahtsitn; without understanding a
social situation, which includes representationstbér agents and their mental states,
the drive has no object, and emotions sucprae andenvyare impossible (Micel
and Castelfranchi 2000). Knoll, who gives a neustigjical basis to the assumptions
of his model, calls the physiological urgasate drivesand distinguishes between

- survival drives: homeostasis; avoidance of displemsind danger; water and

food

- reproductive drives: copulation; nurturing of offisyy

(The Psi theory does contain homeostasis as anicimpkinciple and omits
reproduction, because it is not part of the curagy@nt worlds.)

Sun and Knoll assume a third category of driveigdasecondary driveby Sun),
which are acquired, such as the drives of a calteaf a chess-player, a hunter, a
mathematician. In the Psi theory, there is no sumtion: every goal-directed action
has to serve, directly or indirectly, a ‘hardwiredfive. This is not necessarily a
problem, because the Psi theory attempts to exfiaitbehavior of the mathematician
and the collector by their existing cognitive urgdsecause the urges may have
arbitrary content as their object, as long as neategjies or refinements for handling
this content can be learned (competence) and nesnuag can be explored
(uncertainty reduction). Even ‘procrastinating’ betor can be explained this way, by
avoidance of frustration of the competence urghénface of cognitive difficulties.

| believe that the omission of acquired drives @amtageous, because the
mechanism of the acquisition of secondary drivemaias relatively unclear in the
other theories. What would be the motivation behaeduiring a motivation? What
cannot become a motivation (and thus a source of pleamudedispleasure signals)?
Explaining acquired habits and cultural traits eaditioned ways of an already pre-
existing set of drives seems more elegant and epars

But if Ddrner tries to tell us the whole story ugisuch a reduced set of drives,
then his theory probably covers just the beginnifftere are many white areas in all
the three categories of urges.

The extension of the physiological urge set, fatance with urges for rest and
mating, seems straightforward; in both cases, thereld be relatively well-defined
sets of physiological parameters that can be w#linto demand indicators.

On the level of the cognitive drives, the model emkpparently no provision for
aesthetics. For instance, in humans there arednmatferences for certain kinds of
landscapes—the aesthetics of the natural envirohni&hornhill 2003; Ruso,
Renninger and Atzwanger 2003). Partly, this may deeved by an acquired
association of visible food sources and shelteth egrtain types of landscape, but it
is not clear if this suffices. There is also cuthemo provision for aesthetical
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preferences in other agents (which could trandlatpreferences in finding mates),
and there is no explicit sense fabstract aesthetics, as it is for instance satisfied
when pursuing mathematics. Dérner maintains thatutige for uncertainty reduction
suffices for a motive to create better and morgaaie representations, but it seems to
me that elegance is not a matter of certainty abmnatter of efficient representational
organization. In order to replace a convoluted esentation with a sparser one,
without omitting detail, and perhaps while unearthi previously hidden
dependencies, Psi agents should receive a posgiméorcement signal—and this
preference for elegant representations could bévagut to a third cognitive urge,
one for aesthetics. Eventually, only further exmpemts with more sophisticated
learning strategies and better means of represemtaday show, if such a third urge
is orthogonal to the competence and certainty yayes therefore needed.

In the area of modeling sociality, the notion obturges follegitimacy(Ddrner et
al. 2001; Detje 2003, pp. 241) promises to have éiglanatory power. Dorner
differentiates between external legitimacy, whishalso calledaffiliation urge this
urge is satisfied by signals of positive socialegtance by other agens (‘l-signal’)
and frustrated by negative social signals (‘ardighals’). The agents may also
generate legitimacy signals for themselves, caiiedrnal legitimacy’. These explain
the satisfaction generated by the conformanceda@mtent’s own internalized ethical
and social standards, and frustration and suffeifrife agent has to act against them.
Yet it is not clear if a single affiliatory drivean subsume both nurturing behavior and
conformance with peers—if it was a single driveesth should be mutually replacable
sources of affiliation, just like soft-drinks migintutually replace each other with
respect to the satisfaction of the drinking urgee Tdea that caring for offspring and
enjoying a high level of social acceptance are plrnatives serving the same
appetitive goal seems not entirely plausible to exen though Dérner discusses that
the attainment of sources of affiliation is subjeztconditioning (Dorner 1999, pp.
341). Most interesting is the notion sifipplicativesignals, which are used by agents
to get others to help them. Supplicative signaés esughly speaking, a promise for
(external and internal) legitimacy, and they exprét an agent is unable to solve a
problem it is facing on its own. If an agent seadsipplicative signal, then an urge to
help is created by frustrating the affiliation umgfethe receiver—a supplicative signal
also is an anti-lI-signal; it is unpleasant to pameesomeone in distress (unless one
wishes him ill). The ‘plea’ mechanism enabled bymicative signals allows for
altruistic group strategies that are beneficialtfer population as a whole (Dérner and
Gerdes 2005). It also explains the rolecofing in humans. Crying is mainly an
expression operceived helplessne@dliceli und Castelfranchi 2003), and, in a social
context, a strong supplicative signal (Doérner 1999333). That is also the reason
why crying is only perceived as ‘sincere’ if itils/oluntary.

It is unlikely, however, that affiliation and supgation already tell the whole story
of social interaction. Most social emotions, sustjealousy, triumph or blame, have
(actual or anticipated) mental states of other &ges their objects (Castelfranchi
1998). Psi agents currently have theory of mind(Perner 1999), no model of the
mental states of others. Therefore, they can rat pbnsistent social roles, will have
no sophisticated social groups, and can not captbee full range of social
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emotionality; the Psi agents in the original Islasitbation distinguish agents and
objects only by the fact that the former may enfiiliation signals. In the ‘mice’
simulation, every object is a moving agent (allestimeans of interaction with the
environment are restricted to the influences ofedént types of terrain), but is only
modeled with respect to its interaction historyt hg attributing attitudes and other
mental states to it. Could Psi agents learn toautfeeory of mind to interpret other
agents as agents?—In a way, this debate comes towhe question whether the
ability to use ‘theory of mind’ explanations on eth is due to our general ability for
classification and our culture, or if it is due @a innate faculty (a ‘theory of mind
module’ of our brain) we are born with, and itéflected in the question of the nature
of some forms of autism (Baron-Cohen 1995). Reassurobiological research
suggests that humans are indeed equipped withkearittof mind module’, a network
of areas in the brain that are consistently activeng social interaction and social
reasoning (Gallagher and Frith 2003). These firgliagggest that Psi agents would
have to be equipped with such a module too. Faairt®, an emotion like love,
which Ddrner interprets as a combination of affitia, novelty and sexuality, in a
combination matching a single object (Dérner 1999, 574-586), could not
completely be modeled. Without a theory of minde tRsi theory lacks an
understanding oémpathyand the matching of personalities (“Passung”)oAbdter a
loving relationship is established, it does notassarily hinge on the properties of the
object of love, but on it&lentity (see discussion of representational identity otisa
2.3.4.2).

In spite of its current limitations, the way thei Beeory approaches emotion is
fruitful and does much to clarify the subject. Tdwmbination of a modulator model
to capture moods and affective processes with avatmnal model to explain the
range and object-directedness of emotions goesyaleeg way in explaining the
nature of emotion in a computational model. Thehgsifrated and detailed answers
to the question of the nature of emotion is celyaimot the most important, but
perhaps the most interesting and unique aspebed?si theory.
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Appendix 2.1: Areas covered by Dorner’s Psi archite  cture

Areas of research in cognitive architectures, af@iCA, Biologically-Inspired
Cognitive Architectures, Proposer Information Pangph(PIP) for Broad Agency
Announcement 05-18, Defense Advanced ResearchcRBrofgency, Information
Processing Technology Office, Arlington, VA 2005

Topics addressed in Psi theory are marked in grey.

i. Categorical

4. Short-term memory store

6. Intermediate-term memory store
8. Relational memory

iii. Recognition of

multimodal stimuli
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1. Learning

A. Stimulus-response
learning

1. Classical
conditioning a. Configural learning
(associative learning)

2. Instrumental conditioning (operant conditioning)

B. Non-associative learning (single-trial learning)

C. Social learning

D. Procedural learning

E. Motor sequence learning

F. Episodic learning

G. Observational learning

H. Perceptual learning

1.Visual learning

2. Auditory learning

3. Somatosensory learning

4. Olfactory learning

5. Gustatory learning

I. Relational learning

J. Declarative learning

K. Semantic learning

L. Absolute learning

M. Dimensional learning

N. Serial learning

O. Serial reversal learning

P. Habituation

Q. Sensitization

R. Reinforcement
learning

1. Positive reinforcement

2. Negative reinforcement

S.Aversion learning

T. Imprinting

U. Latent learning

V. Rule learning
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1. Social context
2. Task context

B. Context interpretation

F. Behavioral inhibition (action suppression)

H. Provisional planning
|. Long-term planning

K. Movement planning

ii. Estimating long-term
consequences

ii. Comparing long-term
costs

ii. Comparing long-term
benefits

ii. Comparing long-term
cost/benefit relationships
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V. Language /
Symbolic
Communication

A. Language
comprehension

a. Phonological knowledge

b. Morphological knowledge

c. Lexical knowledge

d. Semantic|i. Application of
knowledge |case frames

a.
Identifi-
cation of:

i. Agent
ii. Object

iii. Location

iv. Source

v. Goal

vi. Beneficiary

e. Syntactic knowledge

f. Grammatical knowledge

g. Pragmatic knowledge (contextual knowledge)

h. Discourse knowledge

B. Language
production

1. Phoneme generation

2. Word generation

a. Application of syntax

3. Phrase generation b. Application of grammar

c. Application of semantics

a. Statements

4. Sentence generation

. Imperatives

. Questions

. Conversational structure

5. Generation of higher-

. Narrative structure

order structuring

O|T| [0 |T

. Expository structure
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A. Emotional recognition

D. Deception

Fear

. Surprise

Humor

. Happiness

. Excitation

. Agitation

. Affection

Sadness

FEEREREERRENE

. Anxiety

10. Frustration

11. Grief

12. Regret

13. Anticipation

14. Embarrassment

15. Shame

. Humiliation

14. Embarrassment
15. Shame
16. Humiliation

1. Emotional mimicry

2. Emotional suppression

3. Misdirection of others’ attention(s)
4. Confabulation

E. Recognition of deception

F. Relationship formation

H. Identification of others' intentions
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A. Awareness of time

B. Awareness of self

1. Self criticism

2. Self approval

C. Awareness of others' perspectives

D. Spatial awareness

E. Situational awareness (context awareness)

\VI. Consciousness

F. Appreciation of aesthetics

1. Visual aesthetics

2. Tactile aesthetics

3. Auditory aesthetics

4. Olfactory aesthetics

5. Gustatory aesthetics

6. Polysensory aesthetics

G. Long-term planning

H. Short-term planning

I. Movement planning

J. Goal formation

\VIl. Knowledge representation

A. Syntactic knowledge

B. Semantic knowledge

C. Pragmatic knowledge

D. World knowledge
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\VIII. Logic /
Reasoning

IA. Reasoning
types:

. Causal

. Statistical

. Structural

. Metaphoric

. Intersection

. Example- or case-based

. Symbolic play

. Symbolic mnemonics

Ol [N~ |W[IN|F

. Distributed

i. Categorical
10. Logical a. Syllogistic |ii. Hypothetical
iii. Disjunctive

i. Inference

ii. Mapping

iii. Application

a. Set-subset
b. Set-superset
b. Declarative |i. Semantic [C. Stati_c

rules rules properties

d. Functional
properties

a. Procedural
rules

11. Inferential
rules

12. Abductive reasoning

13. Deductive reasoning

a. Analogical reasoning
14. Inductive [0- Category-based induction

reasoning C. ~[i. Temporal stimulus patterns
Generalization
from:

ii. Spatial stimulus patterns

B. Parsing

C. Semantic translation

D. Disambiguation

E. Symbolic reasoning

. Counting
. Mathematical reasoning

F. Simple logical operations

. Negation

. Conjunction
. Disjunction
. Implication

AW [N[P[N[F
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1. Position
2. Color a. Chromatic contrast
a. Direction
3. Motion b. Velocity
A. Detection c. Acceleration
IX. and 4. Depth (stereopsis)
E!e_mentary p_rocessi_ng of 5. Intensity a. Absolute luminance
\Vision visual stimulus (Iﬁminance) b. Spatial luminance contrast
parameters: c. Temporal luminance contrast

6. Spatial frequency

7. Temporal frequency

8. Edge detection

9. Edge orientation

X. Higher Vision—
Object Perception

a. Contours

b. Surfaces
A. Feature extraction; c. Textures
Extrapolation of... d. 3-dimensional form

e. Form-from-motion

. Figure-ground separation

. Object detection

. Object recognition

. Pattern recognition (same thing)

mm|io|0O|®

. Perceptual binding of visual stimulus features

XI. Higher Vision—
Spatial Perception

. Object size

. Inter-object distances

. Inter-object spatial relationships

BIW[N [~

. Distance of object from observer

a. Eye-centered coordinates

SRcmicepocaonpEY b. Head-centered coordinates

multiple coordinate

frames c. Body-centered coordinates

d. World-centered coordinates
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1. Stimulus position
IA. Detection and  |2- Stimulus duration
processing of tactile|3. Stimulus amplitude/intensity
stimulus a. Direction
parameters 4. Stimulus motion  |b. Velocity
c. Acceleration
1. Thermosensation == Cold
XIl. Somato- b. Heat
sensation a. thermonociception
B. Detection and ~ [2- Nociception b. chemonociception
discrimination via c. mechanonociception
multiple a. Low-threshold
submodalities b. High-threshold
3. Mechanosensation [c. Flutter sense
d. Vibratory sense
e. Visceral sense
A. Detection and processing of olfactory |1. Odor intensity
XIIl. Olfaction  |stimulus parameters 2. Odor duration
B. Odor discrimination (type or source of odor)
1. Sweetness
2. Saltiness
A. Detection and 3. Sourness
XIV. Gustation processing of taste 4 Bitterness
parameters: - -
5. Taste intensity
6. Taste duration
1. Intensity (loudness/volume)
2. Frequency (timbre) ?#:Jﬁg?gg?{yggomposmon
3. Duration
4. Source location
A. Dete(_:tion and 2. Direction
XV. Audition g[lod?teosrf/lr;gn?{llus 5. Source movement b. Velocity .
parameters: c. Acceleration
a. Direction
6. Change in frequency |b. Rate
c. Acceleration
a. Direction
7. Change in intensity b. Rate

c. Acceleration
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XVI. Proprioception

. Static limb position

. Static head position

. Static trunk position

A. Awareness of:

. Movement (kinesthesia)

. Direction

. Velocity

1
2
3
4. Joint angle
5
a
b
c

. Acceleration

XVII. Vestibular function

A. Pitch sensation

B. Yaw sensation

C. Roll sensation

D. Postural reflex responses

E. Balance reflexes

1. Spatial co-localization

A. Perceptual binding |2- Temporal coincidence

)Ii\cfll)llls'ensory of multimodal a. Velocity
integration (polysensory) stimulus [3. Common dynamics: |b. Direction
features based on: . Acceleration

4. Previous experience (memory)

XIX. Spatial cognition

. Navigation

. Spatial mapping

. Object detection

. Object avoidance

A
B
C. Spatial memory
D
E
F

. Object rotation

G. Visually guided movement

1. Eye-centered coordinates

H. Coordinate 2. Head-centered coordinates

transformations 3. Body-centered coordinates

4. World-centered coordinates

18. Attentional mechanisms

A. Preattentive mechanisms (perceptual salience)

B. Arousal (global changes in alertness)

C. Voluntary attention (active)

D. Involuntary attention (passive)

1. Posture/body orientation

E. Orientation behavior

2. Orientation of sensory organs

F. Stimulus localization

G. Stimulus selection

H. Stimulus tracking (smooth pursuit)

|. Attention shift

J. Suppression of irrelevant stimuli

K. Flexible allocation of processing resources
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A. Combinational creativity

B. Auditory creativity

C. Visual creativity

D. Gustatory creativity

E. Olfactory creativity

F. Tactile creativity

G. Motor creativity

H. Spatial creativity

I. Analytical creativity

J. Mathematical creativity

K. Exploratory creativity

L. Transformational creativity

1. Metaphor
2. Narrative

18I. Creativity

M. Linguistic creativity

A. Reward optimization

B. Avoidance of aversive stimuli

C. Appetitive motivation
18I1. Motivation D. Homeostatic motivation

E. Reproductive motivation

F. Altruistic motivation

G. Hedonic motivation
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3 The MicroPsi Architecture

“We will give birth by machine. We will build a thsand steam-
powered mothers. From them will pour forth a riediife. Nothing but
life! Nothing but Robots!”

Damon, leader of the robots, from Katéhpek’s play “R.U.R.”, 1920

When the Psi theory sketched its map of a mindguaicomputational theory, it left
the methodological vincinity of experimental psyldygy, but gained a novel and
more comprehensive perspective on cognitionlt péctuit as a perceptual symbol
system, embedded into a motivational apparatusnasdulated by emotional states,
as a situated, problem solving agent in pursuthefsatisfaction of physiological and
cognitive urges, acting over and making sense oheterogenous, dynamic
environment, and—in most recent work—as a part ofarger set of socially
interacting agents. Dorner’s attempt to analyticalkplain the principles of human
problem solving and action regulation has indeed I a ‘blueprint for a mind’, a
broad model, a unified architecture of cognitiors Af recently, this domain of
research has become much more populated, and Draesearch finds itself in close
neighborhood to other developments in the cognith@deling community, and to
architectures and methods developed in Artifiaigélligence.

The goal of this work is to highlight these compiities, and to make Ddrner’s
theory accessible to other researchers, by cléelytifying his contributions, and by
translating his suggestions for computer models mtre-usable framework for a
cognitive architecture.

In my view, the Psi theory’s unique contributionGognitive Scienceis the way it
combines grounded neurosymbolic representations avipolythematic motivational
system. It is offering a conceptual explanationtfoth the multitude of goals a mind
sets, pursues and abandons during its cogitatidnaation, and the perhaps equally
important serendipity of the wandering thoughts asdociations. By including an
understanding ofmodulated cognition that treats affective states as particula
configurations of perceptual processes, action lagign, planning and memory
access, the Psi theory offers a non-trivial intégraof emotion into its architecture,
which is consistent not only with external obsefgap but also with the
phenomenology of feeling and emotion.

Cognitive architectures that are open to implentenras computer models often
restrict themselves to the question of the fundatigrof cognitive processes and how
human behavior can be simulated within a technicainework. Rarely do they
address the question of how these processes aralibesh give rise to cognitive
autonomy, personhood and phenomenal experiencehart: of how they bring a
mind into being. Dérner’s philosophy never gets alinen confronted with matters of
this kind, and yet remains always true to its fiorelist and constructionist stance.
Of course, the Psi theory is very far from offerocgmprehensive answers to all of the
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problems of the philosophy, functionality and ploysgy of cognition. But as a
framework for thinking about the mind, it offersote to ask these questions, in ways
that make it possible to answer them in a fruitfidly, open to critical discussion,
experimental validation and further exploration.

These aspects may explain why we—the author andoapgof enthusiastic
students of Al and Cognitive Science that chos@ito this enterprise—decided to
choose the Psi theory as a starting point for dtengpts at building models of
cognition. The result of these attempts is MieroPsi project (see the MicroPsi
homepage; Bach Bach 2003, 2005, 2006, 2007; Baghvame 2003, 2004; Bach,
Bauer and Vuine 2006; Bach, Dorner and Vuine 2@#ch, Dorner, Gerdes and
Zundel 2005). The name ‘MicroPsi’ credits the inakle limitations that we had to
introduce into our small model, which inevitablyllwanly be fulfilling a sub-set of
the Psi theory’s goals.

3.1 Goals of the MicroPsi project

In our attempt to understand, structure and sunmmatiie Psi theory, we soon
discovered that the existing implementations of B theory by Doérner and his
group were very fragmentary and difficult to exteiiny cognitive models suffer
from usability problems (Ritter, Jones and Bax@9&; Ritter et al. 2002, pp. 29), and
the Psi implementations of EmoRegul (Dérner, Hammd Hille 1997), the Island
game and the 3D island (discussed in the firsi@@ctmake no exception. It became
clear that, in order to set up experiments, deBigiragents, test and extend the theory
and to make the work accessible to others, we wawdd to design a new
implementation of the agents, their representatistmactures, the modeling tools and
the simulation framework from the ground up.

3.1.1 A framework for cognitive agents

This work is not just an attempt to explore thedeid structure of Dérner’s work and
discuss its flaws. Beyond that, it was our goat#ory the Psi theory into Al and
Cognitive Science. Our model should be structunedl general enough to act as a
foundation for further research, not just withirr @uoup, but also for others with an
interest in cognitive modeling. Eventually, we dksa that this new implementation
would have to meet the following criteria:

- Robustnesstsing established software engineering techniquesyanted to
achieve a powerful and extensible software dedigih ¢ould be adapted to
future changes, different hardware and variousiegjibns without rewriting
and restructuring it.

- Platform independenceévlicroPsi was to run on various operating systeass,
a distributed application, through web interfacas,stand-alone systems and
possibly even on embedded platforms for applicatiambotics.

- Speed: The system would have to be fast enough to suppande
neurosymbolic representations within a single aglemge agent populations
and large simulation environments.
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- Multi-agent capabilitiesGroups of MicroPsi agents should be able to ictera
with each other in simulated environments.

- Networking capabilitiesit should be possible to run all components on a
single machine, but if agents get larger, we wded the opportunity to run
them on independent machines. Likewise, the sinmnanvironment and the
viewer applications may have to run on independsatthines.

- Robotic interfaceJust as a MicroPsi agent creates representat@sedbon
sensory input that arrives through input neuronsnected to a simulated
world, and acts by sending actions through actuagurons, it should be
possible to connect it to a real environment b¥ilig it to robotic sensors
and actuators.

- Human-computer interfacdzor experiments comparing human performance
with agent performance, and for the supervision aesnonstration of
experiments, the platform would need a viewer apgilbn that could be
adapted to different experimental setups.

Besides this technical set of criteria, we wantedrteet a number of goals with
respect to the theory. Specifically, we liked theonwlithic neurosymbolic
representations suggested by the Psi theory, wihimld use spreading activation
networks to construct object representations, obrtructures, associative memory
and motivational system—in short, every aspechefdgent. This was the feature that
we missed most in the actual implementations ofnBds group. With the exception
of DAS(Hammer and Kinzel 2003), a simulator for thresledments that was used
as a demonstrator and classroom tool for parthefmotivational system and the
principles of spreading activation in memory, evergodel replaced the
neurosymbolic representations with rigid pointerustures in Delphi (for object
representations and protocols) or omitted them detaly (for all other control
structures). Thus, the core of the MicroPsi framéwwould be an editor and
simulator for spreading activation networks. Theresentations should be:

- Monolithic: All control structures of the agent are expresaéti the same
representational structures.

- Neurosymbolic:Using the representations, we want to demonstoat
planning and neural learning. Thus, we would neddrmalism that can be
utilized for distributed and localist representatio

- Integrated with high-level programming languageBuilding control
structures for learning, planning, controling rabatc. from single neural
elements would not just be painstaking and errong+it is practically
infeasible, and execution would be prohibitivelyowsl Thus, the neural
representations would have to seamlessly incorpgraigramming code in a
standard high-level language.

- Independent of the applicationWith a neurosymbolic interface, the
representations should be compatible with both kited and physical
environments. Drivers for robotic hardware wouldvénao be hidden by
software adapters that are addressed with neurahfion values in real-time.
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- Conforming to the theoryThe representational entities and the way they are
used should be as close as possible to the th&bry.does not necessarily
mean a restriction to threshold elements; ratherwanted to find a viable
way for using a concise notation for executablegrdrichical semantic
networks that includes Ddrnersuadsand register neuronsas meaningful
sub-set.

- Extensible where necessaryhe Psi theory does not include link types for
“is-a” and symbolic reference. | think that this might #eshortcoming,
especially since Dorner has addasdl hoelink types in his implementations
when he was confronted with the problems posed Hajyr tomission, for
instancecolor-links, andlinguistic reference'pic’ and ‘lan’).

In the following section, | will describe the repemtations used to meet these
demands—the MicroPsi Node Nets—and the framewaak we have developed to

design and run MicroPsi agents. But first, let avéha look at what such an agent
should look like.

3.1.2 Towards MicroPsi agents

The design of Ddrner’'s Psi agent, especially in‘thland’ simulation, is not only
determined by the theory but largely by the sofevechnology that was used in its
implementation. The decision to write the softwiar®elphi, without the recourse to
object orientation or multi-threading, leads to anwlithic and entirely sequential
control structure—the activity of the agent is argad in a strictsense-think-act
loop, that is followed through in every cycle oktkimulation. The activity of the
agent consists of the call to a perceptual subfreufollowed by an evaluation of the
motivational parameters, and then a check for pdg&s for ‘opportunistic
behavior’ (actions that are not part of the currpten, but are afforded by the
environment and allow for instant gratificationaf active demand). Next, the agent
will attempt to establish a plan to satisfy the deds identified by the motivational
subroutine; either by identifying an already es&ite#d behavior routine (automatism)
or by constructing a plan using a hill-climbing s#athrough the space of known
operators (actions) and pre-conditions (situatioHsyuch a plan already exists, or a
new one is found, the next applicable action isated, and the next cycle begins.

Of course, this does not imply that the theory sstg) that the brain waits for
perception before planning ensues, and eventuddigers actions—in reality, for all
these faculties, a multitude of specialized proegss active at the same time and on
several layers. Also, it makes sense to abandonditvision between perception,
action and cognitive behaviors—all these aspectsoghition are actions in some
way, and differ mainly in the operations that tiegger, i.e. in the actuators that they
are connected to, and that either initiate andgmatie external sensing, or trigger
cognitive and external behaviors.

On the other hand, the Psi theory does not reatlblish an agent architecture—
it is much more a collection of principles and noet; and the sketch of a cognitive
architecture presented in the first chapter is dvdee of these principles, combined
with my attempts at abstracting from the currenlementations.
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With this in mind, we may set out to discuss thsigie of a technical framework
for such an agent, as well as the representatietractures to be used in its
implementation.

3.1.2.1 Architectural overview

The architectural sketch of the MicroPsi agent &igaf several main components,
which are all concurrently active. These componeate connected to their
environment by a set of somatic parameters (likeadtness’ and ‘hunger’) and
external sensors. From these parameters, whichiwna as activation values in input
neurons, somatic desires (‘urges’), immediate pesceand modulators are
automatically derived. The activity of the agenhsists of a number of internal and
external behavior modules. While the former arertak actions, the latter send
sequences of actuator commands to the environmesetiing activation levels in

actuator neurons.

MicroPSI Agent

)

Meta-Management

Behaviour Script Space /

Execution Space Loy VEHin YIEely

(LT™)

Memory
Maintenance

Short Term
Memory/
Local Perceptual
Space

\ ‘ Y

Sensors/ External
Q/Iodulators UrgeSensor PerceptSensor Behaviors
Body Parameters | Perception | | Action

Figure 3.1: Overview of MicroPsi agent architecture

Motivation Execution

The representations that can be derived from extgrercepts (in conjunction with
knowledge that has been acquired earlier) are dstiorehe agent’'s access memory.
The agent also possesses a long-term memory thds it® history and concepts that
have been derived from interaction with the envinent. The exchange between long
term and access memory takes place through a seauttfnomous memory
maintenance processes, which also handle memogydeoncept generation and so
on. The agent’s internal behaviors are meant talleaits higher cognitive processes.
They are triggered by motivations and modified byset of modulators. The
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management of processing resources between theahteehaviors and the memory
maintenance mechanisms is handled by the meta-reareag module.

This division captures the main principle of coiy@tprocessing embedded into a
motivational and modulatory system. However, ita@atseveral modifications to
Dérner’s original layout: It includes a meta-marnaig@odule to coordinate resources
between the different sub-systems (and, in a ramildhnging environment, could also
be used to trigger alarms and orientation behavenmyl memory is separated into
long-term memory and working memory. The latterngealso requires mechanisms
to exchange information between long-term memoryl amort-term memory
(memory maintenance).

In the Psi theory, there is no dedicated (strudljusseparate) working memory,
even though it is usually considered a central aomept of human cognition (Boff
and Lincoln 1986, Sec. 7; Just and Carpenter 188%ell and Simon 1972; Wickens
1992). Instead, operations take place on a globathony structure, with several
exceptions: The ‘inner screen’ allows to tempoyardonstruct anticipated and
hypothetical situation representations, so thay tban be compared with actual
sensory input. The second exception is the cusemtd model that is continuously
spun into a protocol by successively adding nevaintfations of the current world
model. (Thus, it is structurally not separate frdmng-term memory.) All other
functionality that is usually attributed to a segtarworking memory is achieved by
setting temporary links from a set of register &gt and by using temporary
activations. This way, an expectation horizon (irdiately anticipated events), and
active plan elements and goal situations can bataiaed.

There are good reasons to reflect the functionplarsgion between strictly
temporary and permanently stored representaticmateat with different functional
modules, but the Psi theory’s suggestion of a dlob@mory is shared by several
other cognitive architectures. For instance, ACTaid CAPS also treat working
memory as an activated portion of long-term mem(igr a review on approaches to
modeling working memory, see Miyake and Shah 1999.Ythe MicroPsi agent
architecture, the distinction is largely technical.

3.1.2.2 Components
The working memory of MicroPsi is the portion of mery that subsumes active
perceptual content, goals, plans etc., while largit memory contains protocols,
established behavior routines, information aboutividual objects and abstracted
categorical knowledge.

Here, objects, situations, categories, actionsoglgis and plans are all represented
as hierarchical networks of nodes. Every node stémda representational entity and
may be expanded into weighted conjunctions or dijons of subordinated node
nets, which ultimately ‘bottom out’ in reference@sgensors and actuators. Thus, the
semantics of all acquired representations resuifh finteraction with the environment
or from somatic responses of the agent to exteamainternal situations. For
communicating agents, they may potentially be @sfifrom explanations, where the
interaction partner (another software agent or andm teacher) refers to such
experiences or previously acquired concepts.
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Figure 3.2: Main components of MicroPsi agent asttture.

The modulatory parameters of the MicroPsi agentndethe configuration of its
cognitive system with respect &ousal resolution levelandselection thresholdin
dynamic environments, theate of securing behaviois an additional modulatory
parameter). This configuration influences how aaragerceives, plans, memorizes,
selects intentions and acts. The modulation isgthesi to allocate mental resources in
a way that is suitable to a given situation andicedthe computational complexity of
the tasks at hand (see Dérner and Schaub 199&)fisplty:

- Thearousalis a parameter to action readiness of differentler strategies,
and it influences the depth and breadth of actvasipreading during retrieval
of memory and perceptual content.

- The resolution levelcontrols the threshold of activation spreadingd an
thereby influences the breadth of search durirmienet!.

- The selection thresholdcontrols the likelihood of motive changes by
increasing the strength of the currently active imgot thereby reducing
motive oscillations (i.e. repeated changes betwabernate, conflicting
goals).
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The agent’s motivational system is based on a numb@nate desiresu(geg that
are the source of its motives. Events that raissaltesires are interpreted as negative
reinforcement signals, whereas a satisfaction @ésire creates a positive signal. On
the “physiological level”, there are urges fimtactness energy food and water).
Additionally, MicroPsi agents have cognitive urgés, competencandreduction of
uncertainty and a social urgeffiliation. The levels of energy and social satisfaction
(affiliation) are self-depleting and need to besea through interaction with the
environment. The cognitive urges (competence addateon of uncertainty) lead the
agent into exploration strategies, but limit thege directions, where the interaction
with the environment proves to be successful. Tgrenamay establish and pursue
sub-goals that are not directly connected to itesyr but these are parts of plans that
ultimately end in the satisfaction of its urges.

The execution of internal behaviors and the evalnabf the uncertainty of
externally perceivable events create a feedbacthermodulators and the cognitive
urges of the agent.

External perceptions are derived from hypotheseritathe environment which
are pre-activated by context and recognized featuend then tested against
immediate external percepts. Only if the expectetiof the agent fail, and no theory
about the perceived external phenomena can be fioumemory (‘assimilation’), a
new object schema is acquired by a scanning prq&@ssommodation’) that leaves
the agent with a hierarchical node net. Abstractcepts that may not be directly
observed (for instance classes of transactions—¢jkéng’'—or object categories—
like ‘food") are defined by referencing multiple @mas in such a way that their
commonalities or differences become the focustehtibn11®

External percepts are mapped into a space of sen@ommediate external
percepts’), from which a representation of the agarvironment is created (‘local
perceptual space’). Changes in the environmentererded into the agent’'s short-
term episodic memory. The mechanisms responsibiléhis form the autonomous
external perception of the agent.

The agent represents actions as triplets of nodhsere the first references the
elements of a situation that form the pre-conditmnan action, the second the
actuator that leads to the change in the envirotnaerd the last the changes that
form the post-condition. The actuator often retersther chains of actions (‘macros’
or ‘scripts’), which makes long plans feasible lacking sub-plans into chunks. Since
all internal behaviors—perception, goal identifioat planning, meta-management
etc.—may be formulated as node chains and can bjecuo the evaluation and

115 Here, abstraction should be basedstroctural similarityor onrelevance For instance, in
the case of an abstraction like ‘giving’, episotase to be described usittgematic rolessuch

as ‘giver’, ‘given’ and ‘receiver’, which togethéarm an abstract ‘giving schema’, from which
individual role properties can be inherited to dissca concrete situation more efficiently. The
abstract schema captures the common aspects oflepisvhere the control over an object is
transferred from one agent to another. In the ‘f@x@mple, abstraction could be achieved by
grouping instrumental objects of consumptive adisatisfying the food urge into a single
category.
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planning of the agent, it has the tools to re-pmogiits own strategies. Eventually,
language should become a structuring aid for bengrbgrams.

MicroPsi agents possess a small sgblafhning strategies. Given a goal situation
(which is derived from the motivational procesgeats try to find a chain of actions
that leads from the current situation to the g@altgmatism). If no such chain is
remembered, its construction is attempted by comgimactions (see above). This
may happen by different search algorithms (forwavdckward, A* etc.), using
spreading activation from the goal situation, therent situation, or both, and where
depth and width of the search are controled byrthdulators.

Although there is no singular control structureefitral execution”), the different
processes forming the internal behaviors and thenamg maintenance are being
allocated processing resources according to thengsituation. This may happen by
calling them with varying frequencies or by usirigagithms that consume different
amounts of memory and processing time. Thus, diffetayers of reactivity within
the agent can be realized. Note that this doesampen by distinguishing behaviors
based on their level of reactivity, but by promgtia cognitive process if its
successful execution needs more attention, aneginoting it if it runs smoothly. The
evaluation of the performance of such processdseisask of the meta-management.
The meta-management is not to be confused with eaveas or some form of
consciousness of the agent; rather, it is a cagnliehavior like others and can also
be subject to different levels of processig.

Dynamic environments may also require a sealafms The MicroPsi agent is
not guaranteed to execute the meta-managementart sfiervals or with high
attention, which can prevent it from reacting glycko environmental changes.
Dérner has proposed a ‘securing behavior’ that khbe executed by the agent in
regular intervals, while for instance Sloman (198d3cribes a system which he terms
‘alarms’, with the same purpose: to quickly disraptrent cognitive processes if the
need arises. In MicroPsi, an orientation behavioule follow if unexpected rapid
changes in the low level perception or urge dedactiere encountered. (This is not
part of the current MicroPsi, because its enviromine® far contains no predators or
other hazards that would require quick reaction.)

The memory content of MicroPsi agents is storediasarchical networks of nodes,
which act as universal data structures for peroaptmemory and planning. These
networks store object descriptions partonomic hierarchiesi.e. the nodes are
organized usinghas-part’ links (called sub in Dérner's terminology), and their
inversions fpart-of’ or sur, respectively). The lowest level of these hiersgshs
given by sensor nodes (and actuator nodes) that daextly linked to the
environment. These elementary representational exieam are ‘part-of’ simple
arrangements of the sensory content that activheetdividual sensory hypotheses.
The relationshipsvithin these arrangements, on the same level of therblgraare

116 Here, attention is the focusing of processing ueses, while awareness is an integration of
active elements from different cognitive behavio® a single process with high attention.
Awareness is currently not a part of MicroPsi.
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expressed with spatially and/or temporally annaotaseiccessor and predecessor
relations por andret). (Figure 3.3 gives a simple example: Sensorglfagonal and
vertical line segments atpart-of’ spatial arrangements that form either a trianale,
square or a diamond. Diamonds and squares maybalsubsumed under a more
general rectangle concept.)

<+ POR/RET (spatially annotated)

>——> SUR/SUB (adjusted for logical AND) (D-O)
Seemeenes > SUR/SUB (adjusted for logical OR)
(A) (n) P S ()

Concept

Sensor Nodes (basic line segments)

Figure 3.3: Hierarchical sensor schema (schematic).

The nodes may also be arranged iptwr-linked chains to represent episodes in
protocol memory, behavior programs and controlcttmes. (See figure 3.4 for a
simplified action schema.) By alternating actiorsat@tions (portions of the chain
that ‘bottom out’ in actuator nodes) with sensoegctiptions, schemas may refer to
situations preceding an action, and resulting fesrraction, respectively. In this way,
it is possible to express that if the agent findelf in a matching prior situation, it
may reach the posterior situation by the executiba certain action. Using multiple
por-links, alternative branches of plans and episedigpts may be described.
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(Situation :J Action 1 [Situation Zj Action 2 [Situation sj Action 3

Figure 3.4: Representation of behavior program (secttie).

Even though the Psi theory does not distinguisiwveen different types of memory,
splitting it into different areas (node spaces)pbeto clarify the different stages of
cognitive processing, as well as the different ar@amemory. The main distinction
that has been introduced into MicroPsi is the spitb long-term memory and
workspace. This enables agents to represent angbutate data quickly according to
a given context, and to establish and test new thgses without compromising
established long-term memory.

The main kinds of information in the short-term nweyn include the actual
situation, the current course of events, a contxtackground for objects in the
current situation, as well as currently active gaaid plans.

The long-term memory stores information about imtlial objects, categories
derived from these objects, a biography of the ag@motocol memory), a library of
plans and plan-components, and a map of the emaiah

Both long term and short-term memory face a deddinks between nodes (as
long as the strength of the links does not exceeeri@in level that guarantees not to
forget vital information). The decay is much strengn short-term memory, and is
counterbalanced by two mechanisms:

- usage strengthens the links, and

- events that are strongly connected to a positiveegiative influence on the

urges of the agent (such as the discovery of arggrsmurce or the suffering
of an accident) lead to a retro gradient connediicnease of the preceding
situations.

If a link deteriorates completely, individual istdd nodes become obsolete and
are removed. If gaps are the result of such amsimtj an attempt is made to bridge it
by extending the links of its neighbors. This psxenay lead to the exclusion of
meaningless elements from object descriptions aotbgol chains.

A simple similarity measure of node schemas can be established hy@eate or
a partial match. If the resolution level of an agesnlow, the comparison of spatial
and temporal features and the restriction to fefeatures may allow for greater
tolerances. If the depth of the comparison is kehitoo, the agent may notice
structural similarity, for instance between a hurfese and a cartoon face. However,
the key to structural similarity is the organizatiof node schemas into hierarchies
(where an abstract face schema may consist of r@@e and mouth schemas in a
certain arrangement, and can thus be similar tenailéy’). Furthermore, many
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objects can only be classified using abstract hibias!1’ It seems that humans tend
to establish no more than 5-9 elements in each lefvdierarchy, so that these
elements can be assessed in parallel (Olson ang 2@02).

Such hierarchies might be derived mainly in threg/sv by identifying prominent
elements of objects (that is, structures that a%y éo recognize by interaction or
perception and also good predictors for the obgateégory), by guessing, and by
communication.

Using the broad layout for an agent architectureemgiabove, let us have a look at
MicroPsi's representations.

3.2 Representations in MicroPsi: Executable
Compositional Hierarchies

Dérner's Psi theory introduces its perspective asighing cognitive agents with
using networks of simple threshold elements. Thestevorks are connected to the
environment through sensor and actuator nodedditian, there are special “neural
actuator nodes”—they may control the activationhimitthe net, and they may set,
remove, strengthen or weaken individual links. ©onf representational units, they
are organized into groups of central nodes and ‘Baitellite nodes’ that act as gates
for directional spreading of activation; these greare called ‘quads’.

The representations used within MicroPsi capturis fanctionality and add
enough features to extend them into a graphicaligdetéanguage for agent
architecturesMicroPsi node netswill have to act both as feed-forward networks
suitable for backpropagation learning and as symlpsdn representations. Even the
control structures of our agents are going to b@léemented within the same
networks as are their plans and their representatid the environment. Thus, it is
not necessary to draw a sharp boundary betweegaratal abstractions and sensory-
motor behavior. Rather, it is possible to expresgssrand abstractions as instances of
localist neural network structures that may everused to facilitate neural learning.
We may thus mix distributed representations atledicriptional levels with rules, and
we can also use rules at the lowest sensory-metaild, if this is appropriate for a
given task.

Because the representations in MicroPsi are meaghtds a design tool for agents
and the vehicle of model perceptual content, ptotemory and so on, we prefer to
present them graphically rather than in the fornelafises. Instead of a text editor as
in most other cognitive architectures, the primel tior creating a model is the
graphicalMicroPsi node net editor

117 Trees may be a good example: their similarity i vexy apparent in their actual shape,
rather, it is limited to being rooted in the grouhdving a wooden stem which is connected to
the root, and ends in some equally wooden branmhdise opposite side, whereby the branches
may or may not carry foliage. These features fonnalastract object representation and need to
be individually validated when an object that isingesuspected to qualify as a tree is
encountered.
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3.2.1 Definition of basic elements

The representational structures of a MicroPsi ademrmh a network of nodeSsIN,
made up of units) (also called ‘net entities’), which are connectgdtset of links/.
The environment may provide input to the net DiataSourcesA dataSourceis a
special node, which has an activation value seafyoutside process. Analogous,
there ardDataTargetghat transmit activation values into the outsidei®nment.

NN =(U,V, DataSources DataTargets Aff,) (3.1)

Furthermore, the network needs a function to cdéntre spreading of activation
(provided by f) and a set ofactivators (Acf). Activators regulate directional
spreading of activation, depending on the type ef-emtity. Such a net-entity is
specified by itdd and atype Activation enters the net-entities through theats (1)
and may leave them through thgates(O).

Besides transmitting activation values through rttgates, some specific net-
entities may also manipulate the structure of tékitself, for instance by generating
new nodes and links, changing link-weights and tawinig the activity of portions of
the net. This is done by an intermalde functionf,oge

U ={(id,type 1,0, ,uge)} . froser NN= NN (3.2)

Each slot has aype and an input valuén that simply stores the sum of the
incoming activation of all net-entities linking iio

| ={(slotType in} (3.3)

Each sloti; belongs to a unit at the positiorj. The value of each slot’ is
calculated using, , typically as the weighted sum of its inputs. L(gf...v,) be the
vector of links that connect’ to other nodes, andout,,...,out) be the output
activations of the respective connected gatesis the weight of linkv, , and ¢, is
the certainty annotation of the same link. The trgativation of the slot is given by

k
in,, =%ZWV c, out, (3.4)
! n=1 A

The internal activatiom of every gate is determined by its activation tiow f,,
based in the activation values of the slots andramete® (usually interpreted as a
threshold parameter).

A net-entity may have a differesutput of activationout at every of its gates.
This output depends on the internal activation isrzhlculated with the gate’s output
function (f,,). Among the most important parameters of the dufpuoction are the
minimum (in) and maximum rGay value of the result, and the amplification factor
amp Also, the output function may use the value ef #életivator corresponding to the
gate type.

Oz{(gateTypm, oy¥, min,max arrfgct,fom)} (3.5)
fariing x8 - a (3.6)

f .- a@xActxampx mink max> oL (3.7)

out *
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Activators allow controling the directional spread activation through the
network: there is an activatact,.,,.[] Act for each gate type, and the node output
function (3.7) is usually computed as

max

OUt= aCt,cr,pe [ @MAR] (3.8)

(i.e. the range of the output value is constraiteethe interval fnin, maX.) Thus,
only gates with non-zero activators may propagatéivationll® Gate types
effectively define the type of links; the defaudttg type is callethen’.

The net-entities are connected with weighted linkach link establishes a
directional connection from a gatg" of a net entityu, to a sIoti}‘2 of a net entityu,,

It has a weightv, and an optional spatial or temporal annotasion

\Y ={(o,ul,ij“2,w, st)} ,sOR*; st=( x y z)t (3.9)
u
type; id

Owst),, ki 1) slots gates

| |, f, o, >

_____———-" = node —

x| i o :

- L L it

Figure 3.5: MicroPsi net-entity

With these building blocks, we can define differéyges of nodes. The most simple
unit, which is the equivalent of Doérner’s threshelément, is aegister nodeand it
consists of a single slot, a single gate (of tygen’), connected with a threshold
activation function. Their output is usually compditas

max

out,, =[ampa]’, if a> 6,0 else;a = i, (3.10)

Using register nodes, it is possible to build sinpleural networks, such as
perceptrons.

RegisterNode; id

_‘\________—»—__""gen‘ |gen i

Figure 3.6: Register nodes have a single slot asidgie gate

The connection to the environment is providedsbypsor nodeandactuator nodes
Their activation values are received from and sernhe agent world (which can be a
simulation or a robotic environment). Sensor nodesnot need slots and have a

118 For some specific applications, especially fortaier types of neural networks and
corresponding learning functions, it may be desiraib use different output functions. In
current implementations of MicroPsi, the defaultpaut function may be overwritten with an
arbitrary function of the parameters.
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single gate of typeger; their activationout,,, is computed from an external variable
dataSourcé&l DataSourcg(whereSis the currenhode spacesee below):

max

out,,, =[amp@| ", if a>6,0 else;a = i, OdataSourc (3.11)

Actuator nodes transmit the input activation thegeive through their single slot
(also type gen) to a dataTarget At the same time, they act as sensors and reeeive
value from adataSourcehat usually corresponds with the actuatoldésaTarget The
technical layer of the agent framework sends tlspeetivedataTargetvalue to the
agent’s world-simulator, which maps it to an op@rabn the simulation world (or to
an actuator state of a robot) and sends back sessiar failure message, which in
turn is mapped onto the actuatodataSourceThus, on success of an actiauyt,, of

the actuator is normally set to 1, and on failarelt

ConceptNode; id
_— [

T gen gen
por —

ret

sub

sur

cat

exp
sym
ref

-
_

Figure 3.7: Concept nodes capture the functionafitpdrner’s ‘quads’.

The ‘quads’ of the Psi theory could be implementisthg arrangements of register
nodes, but this would not be very practical. Thead units are the primary part of
the representations in the memory of Psi agents;fepreasons of clarity, usability,
processing speed and memory usage—they are traatadsingle unit. In MicroPsi,
this unit is calledconcept nodeConcept nodesire like register nodes; they have a
single incoming slot, but in addition they have esa¥ kinds of outgoing links (i.e.
types of gates). Each kind of links can be turnadoo off to allow for directional
spreading activation throughout the network, usthg corresponding activator.
Concept nodes allow the construction of partondmecarchies: the vertical direction
is made of by the link typsuly which encodes a part-whole relationship of two
nodes, and the link typgur, which encodes the reciprocal relationship. Hartaby,
concept nodes may be connected wgthr-links, which may encode a cause-effect
relationship, or simply an ordering of nodes. Tippasite ofpor-links areret links.
Additionally, there are link types for encoding egaries ¢at andexp and labeling
(symandref). (Labeling is used to associate concepts withtmlm especially to
establish a relationship between object representatand words for the respective
object.) Again, note thdink typetranslates into a link originating from a gatetloé
respective type.
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Using these basic link types, concept nodes carerbbedded into different
representational contexts by associating them toh eather with part-whole
relationships  gub/suy, successor/predecessor relationships  gor/ref),
category/exemplar relationships dat/exp), and symbol/referent relationships
(sym/re}. Thegenlink may be used to read the activation diredly it is summed up
at the incoming slot of the concept node.

ret node

Figure 3.8: Basic relations of a concept node. énetitor (see below) the start and end
positions of links correspond to the tyjper- links go from left to rightret links from
right to left,sublinks start at the bottom of an nodey-links at the topcat andsym
originate at the upper right/upper left corneritlireversesexpandref at the lower
corners.

Register nodes, concept nodes, sensors and act@aothe basic building blocks of
MicroPsi representations. In addition, there areesd node types which aid in
controling the networks, or which make their deségsier for the experimenter:

Activators: The net entities in a node net may receive thetivation either
through adataSourcei.e. from outside, or through attivator. A node of the type
‘general activator is like an actuator node that raises the activatdf all nodes
within the net to its own level.

The spreading of activation in the node networksciles. In each cycle,
activation is summed up in the slots. If a nettgritecomes active and it has a node
function, then this function is called (it is alpossible to define node functions that
are called in every cycle, regardless of the atitimaof its host entity). Finally, the
activation values for every gate are calculated;tia next cycle, these will be
multiplied with the weights of the outgoing linkacadefine the input activation of the
connected slots.

To initiate directional spreading activatignthe activator of the respective gate
type has to be active. For instance, to have aadivespread along theor-links
within a set of concept nodes, the activafart,, has to be switched on: now, an
active concept node may transmit its activatioodlgh itspor-gate.

Associators:In accordance with the Psi theogssociator nodesnay establish
new links or strengthen existing ones. An associa&s a single slogén), and two
gates: ggengate and a@associatorgate. The net-entities connected to the associator
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gate are called thdield of the associator. If an associator becomes aciive
establishes a connection between the gates ofiakmtly active nodes (except itself
and the nodes directly activated by it) and thévaclots within its field. The weight
W of this connection (between ti& gate ofu; and thej™ slot ofu,) at time step
is calculated as
— -1
Wiy =\ Wiy +a

associator

[associationFactdm, [ar, (3.12)

where W is the weight at the previous time step, ass$ociationFactobl R,

a constant u(‘§5ee figure 3.13 for a step-by-stegtithtion of association). The inverse
functionality to associator nodes is provideddigsociators which can weaken the
links. In MicroPsi, links with a weight of zero digpear.

Node spacesAs an additional structuring element, net-entitieay be grouped
into node spacesA node space is a portion of the node net whimhtains a set of
net-entities and activators, and may have its DataSourcesndDataTargets From
the outside, such a node space looks like a nonmsiéntity, with slots and gates;
these are connected to the interBataSourcesand DataTargets Inside, the node
space looks like a separate node net, and canicdatther node spaces.

S={(U, DataSources DataTargets Aft,)} (3.13)

Every node space has exactly one parent. As atrdbel nodes form a tree
hierarchy, with the node net itself being the root.

Node spaces have two functions: They constrain atea of influence for
activators and associators (so different node spawey perform different modes of
operation), and they are a structuring tool forigliag agents. Encapsulating
functionality of the agents within node spaces &ié@fpcreating a modular design and
makes it much easier for others to understand takerap of the agent, in much the
same way as a directory structure helps to keegk tod the data stored in a file
system.

Native programming codeto perform operations on the structure of the aeg
would also have to defineode creatorsand various other control entities. However,
during agent development it turned out that sucheshodology is awkward to use,
and we would frequently want to introduce new typespecial net-entities whenever
the need arose. Also, while a graphical programmarguage is intuitive when
looking at object schemas, plan fragments and djgsschemas that have been
acquired by the agent autonomously, it is diffictdt use when it comes to
implementing complex control structures, such askpeopagation learning, graph
matching and so on, because the resulting controettsres quickly become large,
sophisticated puzzles, which are very difficulréad and extremely hard to validate
and debug. These reasons have lead John Anderganip to abandon the neural
implementation of ACT-R (Lebiére and Andersion 1p%3 favor of rule-based
definitions that are implemented in a logic prognaimg language. Likewise, Dorner
has implemented his agents in Delphi and only etedlaome of the functionality of
the ‘quad’-networks as pointer structures.
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8-030915/233333
ScriptExecution

Abort CurrentRe|
ScriptAct | |PrgReg
Debug Macro
Idle
Success

Failure
FailAbort

Figure 3.9: Native module (‘script execution’: adeawith internal functionality to
perform execution and back-tracking in hierarchgzlpts)

In MicroPsi, we have taken the opposite approa@reHthe functionality of a normal
programming language may be encapsulated in indiichodes, callechative
modules Native modules have access to an abstractioheofihderlying structure of
the node nets, they may read and alter link wejgtdsvation values and annotations,
and they may create and remove nodes. In the duwesion of the editor, the
programming language of native modules is Java, @ak may be conviniently
changed and rewritten without restarting the agédative modules may have
arbitrary slots and gates, which are provide therface between its node function
(the internal program) and the rest of the network.

3.2.2 Representation using compositional hierarchie S

In MicroPsi agents, there is no strict distinctinetween symbolic and sub-symbolic
representations. The difference is a gradual oreereby representations may be
more localist or more distributed. For many higlexel cognitive tasks, such as
planning and language, strictly localist structusee deemed essential; in these
procedures, individual objects of reference havédoexplicitly addressed to bring
them into a particular arrangement. However, a nogf@esenting an individual
concept (such as an object, a situation or an gvefdrs to subordinate concepts
(using thesublinkage) that define it. These subordinate core@pturn are made up
of more basic subordinate concepts and so on, thetilowest level is given by sensor
nodes and actuator nodes. Thus, every concepasetseference point to a structured
interaction context; symbols are grounded in then#g interface to its outer and
inner environment.

Hierarchies: abstract concepts are made up of more basic ctmc€pese are
referenced usingublinks (i.e. these sub-linked concepts are “pattafconcept).
Because these concepts made up of sub-linked ctnespwell, the result is a
compositional hierarchyin this case, partonomy.
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Figure 3.10: Hierarchical sensor schema (see figL8e The lowest level is given by
sensors, which are embedded into pairs of conaa#s Horizontal links angor/ret;
vertical links aresub/sur

Sequencesto encode protocols of events or action sequenseguences of
concepts need to be expressed. This is done bindimodes usingor-connections.
por acts as an ordering relation and is interpreted ssbjunction in many contexts.
The first element of such por-linked chain is called the head of a chain andksar
the beginning of execution on that level. Theseuseges may occur on all levels of
the hierarchy. Both plans/episodic schemas andcblgehemas are mixtures of
sequences and hierarchies; in fact, object schamaplans on how to recognize an
object, and the spatial annotations between elesriard sequence are interpreted as
actuator parameters for the movement of a fovesae

Disjunctions: Since there might be more than one way to reagoa or to
recognize an object, it should be possible to esgm@ternatives. Currently this is
done by usingsublinked concepts that aneot por-linked, that is, if two concepts
share a commosur/sublinked parent concept without being members pbechain,
they are considered to be alternatives. This alltongnk alternative sub-plans into a
plan, or to specify alternative sensory descrigiohan object concept.
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Figure 3.11: Expressing conjunctions, reciprog# tiirections et andsur) have been
omitted

Conjunctionsin most cases, conjunctions can be expressed ssiuencesEr-
linked chains), or alternatives of the same corx@ptdifferent sequence (multiple
alternativepor-linked chains that permute over the possible setipleorderings).
However, such an approach fails if two sub-concept&d to be activated in parallel,
because the parts of the conjunction might not bevated at the same time.
Currently we cope with this in several ways: byngsweights and threshold values to
express conjunctions (figure 3.10a), with branchatgins (figure 3.10b) or with
reciprocalpor-connections (figure 3.10c). In the first case,emeode the relationship
to the parent by setting the weights ,,; of thesur/sublinks from the alternatives,
to the parent; and a threshold valug of u; such thaRa ;> 8 andXa ni— @i <
g for all individual weightsey; of an alternativey; O {u, . In the second case, we
are using twopor-links (i.e. two por-linked chains) converging onto the same
successor node, and in the third, we are defirfiag fully por-connected topologies
of nodes are given a special treatment by interyébhem as conjunctive.

Temporary bindingbecause a concept may contain more than one eftairt
kind of sub-concept, it has to be ascertainedttiege instances can be distinguished.
Linking a concept several times allows having macio scripts and multiple
instances of the same feature in a sensor scheamaorhe cases, distinguishing
between instances may be done by ensuring thaepective portions of the net are
examined in a sequential manner, and activationfdded from the portion before it
is re-used in a different context (for instancea different spatial location in a scene).
If this cannot be guaranteed, we may create adtgédnces of sub-concepts before
referencing them. This can be signaled by combipiagonomies with an additional
link-type: cat/ref which will be explained below. Note that sensamnsgl actuators are
never instantiated, i.e. if two portions of therhiehy are competing for the same
sensor, they will either have to go through a saqgeeof actions that gives them
exclusive access, or they will have to put up il same sensory value.

Taxonomic relationshipstf two different por-linked chains share neighboring
nodes, and the relationship between these nodesast to be different in each chain
(for instance, there is a different weight on plog andret links, or the direction of the
linkage differs, if they have different orderingsthe respective chains), the specific
relationship can not be inferred, becapeelinks are not relative to the context given
by the parent. This can be overcome by making ttencstructure itself specific to
the parent, and linking the nodes to the chairctire viacat/explinks (figure 3.12).
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Figure 3.12: a) Sharing of differently related teas may lead to conflicts.
b) Separating features and relationship with resipegarent.

Thus, the structural intermediate node may holdvatibn values of thexplinked
actual concept, which itself may be used in othmmtexts as well. Of course, an
intermediate node may have more than exglink. In this case, the linked concepts
become interchangeable (element abstraction). Tiernmediate node may be
interpreted as a category of te&plinked concepts. Usingat and exp links, it is
possible to build taxonomic hierarchies. In conjiorc with sub and sur, MicroPsi
node nets may be used to express hybrjpbose structuregPfleger 2002).

Within MicroPsi agents;at/explinks are also used to reference different instanc
of the same concept, for instance in plans antierldacal perceptual space. Hecat
links may act as pointers to the actual conceplsrig-term memorycat may usually
be interpreted as an “is-a” relationship.

3.2.3 Execution

Behavior programs of MicroPsi agents could all implemented as chains of nodes.
The most simple and straightforward way probablgsists in using linked concept
nodes or register nodes that are activated usisgreading activation mechanism.
Figure 3.13 gives an example: (a) A chain of registodes isgertlinked; an
associator is linked to the second register nodéenchain. In addition, five register
nodes are linked to the associator; the upper thareeconnected to igengate, and
the lower three to itassociationgate. The first node of the chain carries actorati
(b) The activation spreads from the first nodehi@ thain to the second. Because the
first node is not connected to an activation soutdeecomes inactive. (c) The second
node activates the third, and also the associatbisame of the nodes within its field.
(d) The associator establishes new links betweengttes of the active nodes not
linked to it (in this case, the third node of theim) and the slots of the active nodes
within its field. (e) The activation continues afpthe chain; the two new links
between the third node in the chain and the naddsei field of the associator remain.
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Figure 3.13: Execution of a chain of register ndojespreading activation (here:
linking of nodes to the field of an associator)

Conditional execution can be implemented using @enedes that activate or inhibit
other nodes. Portions of the script may affect ogf@tions of the script by sending
activation to associator nodes or activator nowédsle this programming paradigm is
theoretically sufficient, it is unintuitive and ereprone.

3.2.3.1 Execution of hierarchical scripts
For complex behavior programs, a formalism thaluides backtracking and re-using
portions of the script as macros is desirable.

For our purposes, a hierarchical script consista gfaph of optiong), actionsA
and conditionsC. Options might follow each other or might contather options, so
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they can be in the relationshipacqo,, 0,), pred(o;, 0,) iff sucqo,, 0,;), containgoy,
0,) andpart-of(o;, 0,) iff containgo,, 0;). They might also be conjunctivand/o;, 0,)
iff ando,, 0,), or disjunctive:or(o;, 0y) iff or(o,, 0;). The following restriction
applies:and(o;, 0,) O or(oy, 0y) dsucgo,, 0,) — [bs: part-of(o, 03) O part-ofoy, 03).

Options always have one of the stateactive, intended, active, accomplished
failed. To conditions, they may stand in the relationghigctivated-b{c, 0), and to
actions inis-activated-byo, @ andis-activated-b{a, 0. Options becométendedif
they are part of aactive option and werénactive They becomective if they are
intendedand have ng@redecessorshat are noaccomplishedFrom the statactive
they may switch t@ccomplishedf all conditions they aractivated bybecometrue
and for options that arpart of them holds either, that if they are member of a
conjunction, all their conjunction partners arecomplishedor that at least one of
them is not part of a conjunction andaiscomplishednd has no predecessors that are
not accomplished Conversely, they becomiailed if they areactive one of the
conditions they aractivated bybecomedailed or if all options that arpart of them
and are neither inonjunctionsnor successoor predecessorelationships turifailed,
or if they contain no options that are notmjunctionsor successionand one of the
containedoptions becomefailed. And finally, if an option igpart of another option
that turns fromactiveinto any other state, and it is mrt of anotheractive option, it
becomesnactive

The mapping of a hierarchical script as definedvabanto a MicroPsi node net is
straightforward: options may be represented by ephnodes, the part-of relationship
usingsublinks, the successor relationship wbr-links etc. (In order to use macros,
explinks have to be employed as discussed abovectioge3.2.2.)

Conditions can be expressed with sensor nodesaetimhs with actuator nodes,
whereby the activation relationship is expressadgugenlinks. Disjunctions simply
consist in nodes that share the sauerelationship, but are not connected to each
other. This way, there is no difference betweensggnschemas that are used to
describe the appearance of an object, and behpwimrams: a sensory schema is
simply a plan that can be executed in order téamecognize an object.

Even though the notation of a script is simple,et@cute hierarchical scripts,
some additional measures need to be taken. Oneaevesjsts in employing a specific
script execution mechanism that controls the spafaactivation through the script.
We have implemented this as a script execution teothat will “climb” through a
hierarchical script when linked to it (figure 3.14)

Here, the currently active option is marked withirkk and receives activation
through it.sublinked options get theiintendedstatus by a small amount spreading
activation. By preventing this pre-activation fraspreading (for instance by using
inhibitory connections from outside the script)isitpossible to block portions of the
script from execution
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| . 2919 todeSpace: Demonsiration 0-03013/094753  Agent: micopsl

Figure 3.14: Using a native module for script exou

Actions are handled by sending activation into atuator node and waiting for a
specified amount of time for its response. If thuator node does not respond with a
success signal, the script will fail at the respectevel and backtrack; backtracking
positions are held in a stack that is stored withsscript execution module.

The drawbacks of this approach are obvious:

- There is no parallel processing. Only one optiohemg activated at a time.
In the case of conjunctive nodes, the activatiaru$ois given to the one with
the highest pre-activation first. If all conjunaivoptions have the same
activation, one is randomly chosen.

- The activation of the individual nodes poorly refke the execution state,
which is detrimental to some learning methods (lileeaying of rarely used
links).

- The approach does not seamlessly integrate withilised representations,
for instance, it is not advisable to perform bacigagation learning on the
node hierarchy. (It is still possible to add lowdistributed layers that will be
interpreted just like sensor and actuator nodesigh.)

3.2.3.2 Script execution with chunk nodes

It is also possible to devise a specific node tipe acts as a state machine. This
node, callecchunk nodgspreads activation in the following manner: eackde has
two activation values, theequest activatiors, , determining whether a node attempts
to get confirmed by “asking” its sub-nodes, andoafirm activationa, that states
whether a node confirms to its parent conceptsyeviar each node) <a, <a, (or

a, < 0 to signal failure). When a node gets first actehatit switches its state from
inactiveto requestedIt then checks fopor-linking neighbors (i.e. the corresponding
slot): if it has no unconfirmed predecessors (@des that possesgar-link ending

at the current node), it becomesquesting and starts propagating its request
activation to itssublinked sub-concepts. In the next step, it switctoethe statavait

for confirmation which is kept until itsublinked children signal either confirmation
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or failure, or until theirsublinking parent stops sending a request signalerAft
confirmation, the node checks if it hpsr-linked unconfirmed successors. If this is
not the case,a, gets propagated to theublinking parent node, otherwise, is
propagated to the successor node only. The noderéimains in the statonfirmed
until its parent node stops requesting, then gomsk ko inactive (Failures are
propagated immediately.)

With this mechanism, we can describe conjunctiond disjunctions using
weighted links. Since the execution of a scripbd@sv tantamount to pre-activating a
hypothesis (the portion of the script we want tg) tand its failure or success
translates into a match with a sensor configuratiee may use the data structure for
backpropagation and other neural learning methddse distributed nature of
execution makes supervision of the execution mdfiécult, but enables parallel
distributed processing. (It should be mentioned W% can not use simple chains of
por-linked nodes with this approach, without aablinking each of them to the
same parent node. This is less of an issue foschipt execution module, because it
can determine the parent of each element of a sequay parsing backwards along
the ret-links to the first element. But because this mitgke additional time in the
case of backtracking, it seems always a good idetetlare the ‘part-of’ relationship
of each sequence element explicitly.)

MicroPsi's representations are sufficient to defare agent, but toun an agent, to
enable its interaction with other agents, to leinierface to an environment and to
supervise its activity, a broader technical framdwie needed. This is the subject of
the next section.

3.3 The MicroPsi Framework

The following pages deal with the description ofckPsi’s user interface and the
components of the framework. | will focus on thé&enests of a modeler, rather than
taking the perspective of the software engineet, ¥eyou are merely interested in
the theory, you might want to skip this part.

To meet the technical requirements or our projecbustness, speed, platform
independence and networking capabilities—we decidemt to use an Al
programming language, such as LISP, but to baseMibeoPsi framework on the
Java programming language, and implement it ast afsplugins for the Eclipse
platform (see Eclipse project homepage, 2387)Thus, we could make use of
Eclipse’s graphical user interface. Technicallye framework consists of an agent
simulation server, which maintains a multi-agenstegn, along with an arbitrary

119 The implementation of the MicroPsi framework woulot have been possible without the
contributions of numerous enthusiastic studentge@ally Ronnie Vuine, who implemented
large parts of the technical structure and the noelesimulator; Matthias Flssel, who is
responsible for most of the good bits in the waildhulator; David Salz, who contributed the
3D viewer; Colin Bauer, Marcus Dietzsch, Daniel W&iland Leonhard Léer, who performed
their own experiments and drove the developmenh Wikir requests for functionality, and
many others that improved the framework by suppglyheir ideas and criticism.
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number of user console applications and an interfache world server (figure 3.15).
A timer component may synchronize agents and sefver world server manages the
simulation world and may optionally be connectedatoviewer component. The
viewer is a stand-alone application that mirrors tontent of the simulation world
using 3D models and displays it with a displayrdifgame engine). Unlike the other
parts, it has been written in C++ and is curreathilable for Microsoft Windows™
only.

The framework may be downloaded, along with add@ladocumentation, on the
MicroPsi project home page (see MicroPsi homep20@e7).

1] 1]

O @
L 1 1
R Console
Agent (Eclipse with Jdviewer
toolkit)
Timer $ :
A R
—(O— Server —O— World

Agent- Lock Store&Forward
amy (B @D =D

Figure 3.15: Framework, technical layout

3.3.1 Components

From the user’s perspective, the framework is mgulef Eclipseviews configurable
widgets that can be combined intperspectives A perspective collects the
components that are used for a particular stagkesijn or experimentation. For the
user, the framework presents itself as the nodedigr (‘mind perspective’), which
is the front end for the agent simulation and MRsbnode net execution, and the
world editor (‘world perspective’), which acts asveo-dimensional graphical viewer
to the simulation world component. In addition,rthes a monitoring component (‘net
debug perspective’), which aids in experiments tgpbically displaying changes in
the activation of selected nodes, and a consolé tadmin perspective’) that
provides a command line/menu interface to the diffe components, and allows
setting parameters like simulation speed, synchetitin of components, positions of
agents and objects etc. (figure 3.16). The Eclipsmework provides several other
important tools, such as a Java development pdigpe@ debug shell and a
repository perspective.

Additional Eclipse perspectives may be defined bgnbining views of different
components as the user sees fit.
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Figure 3.16: Framework, user perspective

The configuration of the components is specifiedMigroPsi’s runtime preferences.
Configurations are stored as XML files and deteenin

The active components of the frameworknfper) within the given instance
of Eclipse. Sometimes it is desirable not to runcamponents on the same
machine.

The timing parameters (componetitner), especially the cycle length,
whether the net starts automatically, and whetigentiand world should be
synchronized (this is not strictly necessary).

The simulation world parameters (componesatrld), for instance the world
server, its ground-map file, and its configuratidata. MicroPsi includes
continuous and discrete simulations, and diffeodajéct sets and properties.
The world component interfaces with the agents ughoa set ofworld
adapters These provide parameters that can either beaeset by agents.
The control console (componestnsoleg.

The server running all the components.

The agent framework (componeagent framework which specifies the
class of the agent, the location of the sourcegb@figent code (especially the
native modules), the location of its node netssiitsting state and simulation
speed, the world adapter of the agent (there averakedifferent sets of
actuators, for instance for discrete and continlemasnotion, for robot
wheels etc., and matching sets of sensors, urgés@mn). Also, the server
where the agent should be run and the number oftagstances are defined
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here. This is followed by the list of individual exg configurations; it is
possible to mix agents of different types in a Ergimulation.
Optional components include a population serverr (&volution of agent
populations in artificial life experiments) and webmponents.

3.3.2 The node net editor and simulator

The node net editor provides the functionality tefine and manipulate the data
structures defining agents and their representatiBach net-entity is represented as a
box, with its slots to the left and its gates te tight, and thed, the name of the
entity, in a title bar. Link types may be identifiby the gate of their origin and the
slot they connect. Concept nodes make an exceptiosave screen estate, they may
be displayed in a more compact format (withoutsshrid gates), and here, the type of
links is indicated by its origin at the box. Becawsvery net-entity has a slot and a
gate of typegen these are not displayednd genlinks start and end directly at the
box’ title-bar.
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Figure 3.17: Node net editor (‘mind perspective’)

Components of node net editor (see figure 3.17)

No. Explanation Remarks
1 Netview Displays the pane of the graphicalardit
2 Net-entity Here, a selected sensor
3 Link Here, the selected link between a sensdraanative module
4 Update view toggle Turn off redrawing of linksdpeed up simulation
5 Zoom Change the size of the net entities
6 Run Start simulation
7 Stop Pause simulation
8 Step Perform exactly one simulation step, thersp simulation
9 Load Load a node net (including configuration)
10 Save Save a node net
11 New entity Create a net-entity
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12 New link Create a link between two net entitigsirf{g a wizard)
13 Parent Switch to the parent node space
14 Cycle delay Adjust speed of simulation
15 Entity view Displays the properties of the stddmet-entity
16 Id Name of selected entity
17 Gates List of gates (inputs) of selected entity
18 Slots List of slots (outputs) of selected entity
19 Linkage edit view Displays properties of thereuntly selected gate
20 Link list Links that start in currently seledtgate
21 Incoming links view Lists the links that areenimig the currently selected slot
22 Debug source view Provides a data source mistable activation
23 Text editor view Programming editor to edit matmodules
24 Monitor view Displays activation changes of s&dd gates
25 Monitor legend Lists the monitored values
26 Log view Logs of the individual components
27 Library view A user defined library of node fieigments
28 Scripting view An interface to execute a scnigtengine

Table 3.3: Components of the node net editor (‘niacspective’)

The largest portion of the default editor perspecis taken by the net view, which
displays net entities and links, and includes aasatfor loading and saving a net state,
the creation of entities and links, ascending ® plarent node space and controling
the simulation speed. Alongside the net view, thteg, slots and links of the selected
entity are displayed. Additional views may displeng files and error messages.
Finally, there is a library of node arrangements] aptionally, a scripting interface
that allows automatizing operations on the node {Jétis is useful for experiments
that are run in batches, or for the definition oit@ests during agent development).

3.3.2.1 Creation of agents

Before a node net can be defined, an agent th&s idsas to be chosen, and if there
is none, it has to be created. The editor plugffare a menu entry for this; when
creating a new agent, an appropriate configurdtierhas to be specified.

MicroPsi offers a range of default agent configimed with different world
adapters. For instance, there is a ‘Braitenbergtjgamulating two rotating wheels
and two light sensors that have an activation wiggbroportional to the distance to a
light source. The ‘omni-directional agent’ imitateevement with three equidistant
omnidirectional casters (these wheels only protidetion in the direction of their
rotation and glide freely in the perpendicular diren; they have become popular for
soccer robots (Rojas and Forster 2006). Theresis al‘'steam-vehicle agent’ which
provides a MicroPsi agent that is quite similaférner’'s steam locomotive of the
Island simulation.

It is also possible to specify new configuratiohattinclude different interfaces,
such as access to camera images and robotic astuato
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3.3.2.2 Creation of entities

Using the context menu at an empty position ofdtigor view, or by clicking on the
entity creation widget, a node (register, conceggnsor, actuator, associator,
dissociator, activator, deactivator, or directiomativator), a node space (with an
arbitrary number of named slots and gates) or i@enatodule may be created.

Native modules are always stored within agent ptsjethey are distributed as
Java classes along with the net. There may be aleagent projects in the workspace
at the same time, each with its own set of natieglutes, but during the creation of a
native module, it is possible to import it from #imer agent project.

In the creation dialogue, a namd)(and an optional comment may be given to the
entity. If no name is specified, a time stamp iscuas a default.

Links are generated with the link creation widgebw right-clicking on the gate
of origin. Using the creation widget, it is possitib choose the net entities to connect
from a menu, which is helpful when linking betwewdes in different node spaces.

Sensor nodes and actuator nodes will not be fumatid they are not connected to
a data sourceor adata target (Data sources and data targets are specifietien t
agent’s configuration file and provided by therld adaptery This is done using
their context menu, which provides a dialogue fiss all applicable connections.
For testing purposes, the toolkit suppliesdiebug sourcea data source that provides
a slider widget to set its activation.

3.3.2.3 Manipulation of entities

By selecting a node, its slots and gate paraméggeme accessible for viewing and
can be directly manipulated. When a slot is setkcits incoming links are listed.
Upon selection of a gate, the gate parametersisptagled. These are:

- The entity that the gate belongs to, and the gayps (these entries are not
editable).

- The activation (it is possible to set a temporagtivation here; it will pass
into the net, but the gate will become inactiveiadgrathe next cycle).

- The minimum and maximum of the gate output.

- An amplification factor that is multiplied with thgate activation.

- A parameter specifying whether the links connediedt deteriorate over
time.

- The output function and its parametéra set of functions has been pre-
defined already, including threshold functions, dyzamss filters and sigmoids.
Alternatively, the experimenter may specify an @esy calculation here,
which might even include the gate activation frame fprevious simulation
cycle. Thus, it is possible to implement a graddetay of activation in a
straightforward way.

Selecting (double clicking) links allows editingeih weights and annotations;
selecting native modules opens an editor with tilérnal definition as Java routine.
Links may lead into other node spaces or origifieden there. Because only a
single node space is displayed at a time, thedes lere marked by small red
connector widgetsTo trace such a link, select it, and right-clik it in thelinkage



254 The MicroPsi architecture

edit view(for outgoing links) or in théncoming links viewfor incoming links). The
editor then opens a context menu that allows jumponthe connected entity.

A double click on a node space module changes tlitereview to show its
contents. Using the context menu of net entitiaeytmay be aligned, linked, and
their links may be traced to the connected entif@éebelpful function, because links
may lead into different node spaces).

Portions of the net may be copied, pasted andeatgler they may be dragged into
a library view, from which they can be inserteiniifferent agent designs at a later
time.

Native modules, the preferred method of introduategnplex functionality into
the network structures, are defined relativagent projectsWhen inserting a native
module into a nodespace, first the respective aoeject has to be selected, and then
the module is chosen. To change the functionalipapsulated in a native module, it
can simply be opened (by double-clicking). Thisptigs the internal programming
code (a Java object) in the text editor of the pmogming environment. These
changes take effect immediately.

3.3.2.4 Running an agent

The activity of net-entities and gates and thengjite of and activation transmitted

through a link are indicated by color. Inactiveegatire grey, and inactive links with
positive weights have a shade between light gray llack, depending on their

weight (i.e. a weak link is light grey, while atg link appears as a dark stroke).
Links with negative weights have a shade of bltie.display the strength of the links

numerically, turn otink annotationdn the preferences.)

As soon as net-entities, gates or links becomegdiiiey turn to a shade of green
(if the activation is positive) or red (for negatiwactivation). The shade of an active
link is determined by the output activation of tete of their origin, multiplied with
their weight.

The editor contributes controls to the Eclipse iban; these allow to start and halt
the simulation, or to perform a stepwise executf@node net. During the execution
of the net, activation can be observed as it isdegeang through links and passing
through net-entities. Because the time necessargdmaw the node activations and
links might slow down the simulation when there amere than a few hundred
entities, there is also a button to turn disabéevisible update of links.

3.3.3 Monitoring an agent

Monitoring the execution of experiments is abettgda variety of tools, the most
important being the logging tools and the consbbegys are written by all components
of the system, including native modules, which nays be used to display and
record arbitrary data. Of course, console outpuy mlgo be sent directly to other
applications for real-time display.

The MicroPsi framework also provides a simple téak diagram widget
(parameter view). Simply select one of the gateshm entity view, and attach a
monitor to it through its context menu. You alsoynaasign a color and a descriptive
name. The parameter view will then display the gabfi activity in the monitored
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gate, as it changes over time. Because all aativathanges in the network manifest
themselves at the gates of net-entities, the paemew is helpful for instance to
track the strength of urge signals of agents.
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Figure 3.18: Monitoring agent activity with the pareter view widget

If the MicroPsi server (i.e. the agent simulatod/an the world component) run on a
different machine than the agents themselves, thed nfor remote controling
individual components arises. This functionality delivered by the admin
perspective, offering an interface to all the comgrus of the framework. Using the
admin perspective, the agent server, the worldeseamd the timer component can be
gueried for state information and given commands.
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Figure 3.19: Administration perspective

3.3.4 Providing an environment for agent simulation

MicroPsi agents are control structures for robetients, which are embodied in a
virtual or physical environment. MicroPsi node neetik to their environment through
sensors and actuators, which are mappeddata sourcesand data targets
respectivelyWorld adaptersare the software components that supply valueddta
sources from environmental data, or make suredhanges are administered to the
environment according to the values sent to tha tatgets of a node net. While a
world adapter may interface physical sensors, sisch camera image, and send data
to the servo engines driving a robotic arm or whewmist applications will make use
of a simulation world.

Using a simulator instead of a robotic body does ordy reduce the cost and
mechanical overhead of experiments; it is also mbalder and computationally
expensive to tackle the difficulties of real-womthysics, and because of this, most
contemporary applications of robots in CognitivéeBice focus on the learning of
motor skills, on perception under very limited cingstances, on locomotion in very
restricted environments, and on action with a védingited set of interaction
modalities. Conversely, it is relatively straightf@rd to provide a simulated robot
with simplified locomotion, perceptual capabilitieed a large set of possible actions.
Simulations are well suited for many tasks, likedsing the interaction between
several agents, mapping and exploration, imageegssieg using computer generated
images of the environment, classification, plannimgmory, affective reasoning and
so on. Some scenarios are especially difficultnteestigate using robots, especially
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when it comes to evolving agent populations, oritgvarge numbers of agents
interacting at the same time.

Simulation comes at a price, though. The closersitenario gets to low-level
perception and interaction—tasks like visual categtion in the wild, or guesture
recognition, for instance—the more difficult andngautationally expensive does it
get to set up a suitable simulation world. Also.ewbver the agents are required to
discover and classify objects, events, strategidssalutions on their own, it is likely
that they are limited by the provisions of the peogmer of the virtual world; where
humans actively create order in an immensely hgtarous reality, simulated agents
often only re-create the predefined design of trehitects of their software world.
But even in those cases, robots will not alwaydgaie the problem, as long as the
robot can not make sufficient use of its sensesaatahtors to be truly embedded into
our world.

3.3.4.1 The world simulator

MicroPsi's simulation component provides a serwerdbjects interacting in a three-
dimensional space. Since our experiments usudify péace on a plane, the editor and
display tools are tailored for simple and flat tdionensional environments.

Thus, the environment is rectangular and made upeatangularground tiles
which may either admit agents or prevent them feortering. Ground tiles may also
have additional properties, like damaging agentslowing them down, providing
nutrition to simulated plants and so on. To simplifie design of the world, the
different types of ground tiles are specified wittd configuration file and their
arrangement is defined in a bitmap file: in MicrpRlsis map is the territory.

The basic interface to the simulator is providedotigh the administration
perspective, where objects may be created, changedmoved, the speed of the
simulation adjusted, the server configured, restardand so on, using a console
window. For most experiments, however, it is notessary to use this, and access
takes entirely through the intuitiveorld perspective
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Figure 3.20: Editor for the simulation environmémtorld perspective’)

Components of world editor (see figure 3.20)
No. Explanation Remarks
1 Object list view Displays a hierarchical listaf current objects
2 Property view Lists the properties of the cutiseselected object
3 3D viewer (Optional) three-dimensional view lo¢ tsimulation
4 3D engine start Start three-dimensional viewsrseparate application)
5 World view Displays a pane with a two-dimensioniaw of the simulation
6 Object Object in the simulation (here: a seldttee)
7 Zoom Change scale of world map
8 Overlay toggle Display overlays on world view

Table 3.4: Components of the world editor (‘worketgpective’)
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The world perspective is mostly taken up byi@w of the world mapwhich contains
agents and objects; the basic map overlay itsétfeistical to map of ground tiles, or
is at least drawn to reflect the different grougges of the territory. Agents may
navigate these ground types using movement actibhs. outcome of movement
actions depends on the type of ground tile the taigestanding on, the tile below the
target position and, possibly, obstacles inbetween.

Objects in the world can be manipulated by selgctaticking) them, either in the
map view or in theobject list view they may then be dragged around, or their
parameters can be changed indbgct property view

Sometimes it is desirable to interact with an aghrctly, in the guise of another
agent. This functionality is provided by an optibBB view which embeds a graphic
engine rendering a three-dimensional perspectivéhefsimulation world. Another
application of the 3D view is the provision of remdd images as input to agents
capable of low-level visual perception.

3.3.4.2 Setting up a world

Simulation worlds are defined using configuratided, which specify most of their

features, such as their size, their ground-mays,fite properties of the different
ground types, the available object types, the agenter, the visible area and the
default location of new agents (“spawn point”).

The configuration is also the place where the tintanponent (which controls the
speed of the simulation) is indicated. Note that simulation may use a different
timer than the agents, so that agents and simuldtionot need to act synchronously.
Since the simulator, just as the node net simulafathe agents, relies on discrete
steps, if may sometimes be desirable to run itl@gher resolution than the agents to
approximate the smooth transitions of a real-werlgironment.

At each simulation step, the world maintains adistegistered objects, along with
their positions and movement vectors. In additmproviding an interface for objects
to change these positions and vectors, it gramemaber of services to the objects,
which facilitate their interaction. These servigdow agents to perceive and act on
objects (for instance, by eating them). They makaso possible for objects to age
and disappear, and to influence each other by sgndiessages, which may be
restricted to the vincinity of objects, and canoafe subject to an adjustable delay.
This way, water reservoirs may influence the growthplants around them, or a
wildfire may spread from a dry plant to its neighboAlso, objects may have
offspring, for instance, an apple tree object magwm apple objects in its vincinity,
which over time could change and mature into nepleapees.

The toolkit includes configurations for some ralaty simple pre-defined
environments, such as islands reminiscent of D& remulations and populated by
different kinds of plants, and a Martian setup jowg different types of rocks and
tools.

3.3.4.3 Objects in the world

With the exception to the ground map, the worldudator relies entirely on objects.
Objects are characterized by their name, theirumid, their class, whether they are
persistent or perishable, the damage they can tdieir position, orientation,
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bounding box, weight and move vector. Also, olgenty have states, whereby state-
transitions may be triggered by events in the woaldd have consequences for the
behavior and properties of the object.

Objects may be made up recursively of sub-objefcts,instance, a tree may
contain a crown and a trunk, and the crown mayaiortivigs, leaves and fruit, and
so on. Object parts are objects in their own rightgh a position and orientation
relative to their parent object. To simplify pertiep and interaction, object that are
part of the same parent are arranged in a list-Bkeicture, so agents may
incrementally probe through them.

The individual object classes may offer additiopedperties and afford different
actions. The class @fdible objectsfor instance, have a particular content of natse
and water, and they affoehtanddrink actions The class of light sources provides a
brightness function that affects each positiorhanap in a different way, and so on.

Agents are a special class of (usually perishadiggct. While they share most of
their properties with ordinary objects (they mayeevact as food and contain a
nutritional value for predators), they can percedrel act upon the world. This is
done by sending perceptual data to a node netpgn@ceiving actuator data from
there.

For the purpose of displaying object in the edithere is a configuration file
relative to each world definition, which maps olbjagpes, object states and
orientations to bitmaps.

Objects can simply be created by right-clickingitite editor, and their properties
may be accessed and changed in the object property

If an agent is created in such a way, it will netdonnected to a node net. It has
no place to send his perception, and there is ngtto control its actions—thus, it
will just be an empty husk.

3.3.4.4 Connecting agents

The simplest way of creating agents and connedhiamn to the simulator is through
theagent creation wizardvhich is accessible in Eclipse’s main menu bae Wrzard
asks for the specification of an agent configuratite, which in turn refers to the
type, world adapter and properties of the agent.

Agent types are characterized by thedmtroler, their action translator their
percept translatoand theiurge creator

An agent controlerchecks if an agent is ready to receive percepdas (the
agent may also explicitly ask for such data). Ifgeptual data is available, it notifies
the agent. On the other hand, it notifies the waddnponent if the agent sends an
action, and sends back the action result.

Actions on world and its objects are implementeidigisheaction translator and
the actual transmission of the perceptual data thto agent (where it is usually
mapped on some data source) is done bpdhneept translator

Urges are a specific kind of percept that is meéamefer to some “physiological”
state of the agent, such as hunger or damage. Becages may depend on additional
factors, they require additional calculations, whice handled by therge creator
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The place where agents are assigned their corgralege creators, action and percept
translators is calledvorld adapter World adapters pair a certain world type with an
agent type. To connect a certain agent definitiomn @ node net) with a different
world, simply choose a different world adapter, fiestance, to switch a simulated
two-wheeled robot to the set of sensors and aatuafca matching real-world robot.

3.3.4.5 Special display options

For most experiments, the simple two-dimensionagéwviof the simulation
environment provided by the world editor is adequathere are applications,
however, when it does not suffice, and a three-dsimnal display is preferable:
Where the desired input of agents is similar to e@mnput, the two-dimensional
representation of the simulation environment neédsbe rendered in three
dimensions. Also, if human subjects are to be coegpdo the performance of a
computer model, controling an avatar from the fxstson perspective provides a
much higher level of immersion.

The MicroPsi toolkit features 23D viewerapplication that can be adapted to these
needs. This viewer is not part of the Eclipse fravorx (although it can be embedded
into an Eclipse view), but an independent moduét tommunicates with the world
server through a TCP/IP connection, and which kenlMicroPsi’'s other components,
is currently only available for the Microsoft Winde™ operating system, since it
relies on Microsoft’s proprietary DirectX™ technglo Its setup is inspired by first-
person computer games, with a slim display clibat allows a user to navigate freely
in a virtual world, and a server component thatntzns the data and allows the
connection of multiple viewers. Using adaptive lewkdetail techniques, it can
display terrains with viewing distances of sevéildmeters, containing thousands of
objects. The role of the server is taken by theldveimulator, which performs all
calculations with respect to position, orientatiomgvement and collision of objects.
The client mirrors the set of objects along withittpositional data and synchronizes
them with the simulator. It may interpolate movemdmwever, to compensate for a
slow connection, and objects may also be animatedrding to their state.

Usually, the simulation world does not need to knaich area is currently
observed in the viewer, so there is no feedbaclesssry between 3D client and
simulator. To allow users to interact with the slation, as in Dorner’s Psi3D, the
client can also connect as an agent—thus, useratedtMicroPsi agents can be
introduced into the environment. These agents vec#ieir action commands not
from a node net, but from the viewer clients.

The viewer may also be used as an editing tooladsee it allows distributing
large numbers of objects quickly (such as treesiifog a forest, plants making up a
meadow). Changes made to the virtual environmetitinvithe 3D editor are sent to
the framework and are integrated into the worldusation.
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Figure 3.21: 3D viewer, showing “Island” and “Marglenarios

MicroPsi's 3D viewer has been implemented by Da@dlz and is described
elsewhere (Salz 2005); here, | will not discusdltetionality in detail.

The original implementation of Psi by Ddrner’'s gpofeatures an animated face to
display emotional states of their agent. MicroH&rs a similar element, thremotion
viewer This viewer offers a three-dimensional animatwna face, based on 39
rotationalbones which approximate the muscles of the neck, dips, tongue, nose,
upper and lower eyelids, brows, eyeballs and soEach bone offers one degree of
freedom, and each movement is limited by an uppdri@wer swivel angle. The state
of the face can be described by a vector of 39egthat are constrained to an interval
from 0 to 1, with 0.5 being the neutral positioneaich bone.

Like the 3D viewer, the emotion viewer is an ex#&trrapplication that
communicates with the MicroPsi framework throughT@&P/IP connection. The
connection between viewer and agent is facilitdted world adapter that translates
the output of 39 data targets to the animationeglof the bones. Thus, the face can
be controled from a node net through 39 actuatdespif one of these actuator nodes
receives a certain activation, the respective neustves into the respective position.
By superimposing activation values, a wide rangefasfial expressions can be
generated.

To produce expressions that correspond to thesstateoded within a MicroPsi
agents, further processing has to take place withén node net: first, the proto-
emotional parameters (the urges and modulator splhave to be mapped onto
expression parameters (such as pain, pleasurajsgjrpgitation), and these have to
be connected to the layer of facial actuators. Thenections are then (manually)
adjusted to generate believable facial expressifiosn patterns of muscular
activation.
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Figure 3.22: Emotional expression

3.3.5 Controling agents with node nets: an example

The MicroPsi framework is not only suitable for ilamenting the Psi theory; rather,
the framework is a fairly generic runtime envirommdor multi-agent systems. Of
course, its main advantages are its heurosymbofigponents which are built around
its graphical node net editor.

Understanding the usage of the framework is probséived best by an example,
and a simple Braitenberg vehicle (Braitenberg 198i#l)do. Our virtual robot shall
consist of a pair of light-sensitive sensors amaia of actuators connected to wheels.
The sensors and the actuators are to be connetteach a way that the vehicle is
attracted to light sources in its environment.

Before we can implement the agent’s control stmagtwe will need a light source
and a robot20

In the simulator, we have to implementaanp object which is a visual object
with a position and an orientation, and in additiith a functionbrightnesgx,y,?),

120 The lowest level of the implementation (i.e. tagalclasses) is supplied as an example with
the MicroPsi toolkit. This is not the place to eaiplthe programming code itself; rather, | will
only describe what it does.
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which, for each object in the world with a relatiesition §,y,2 to the lamp, returns
a value between 0 and 1. The brightness functiost io& monotonous and continous,
of course, and it should mimic the falloff of lighbm a real lamp; in the easiest case,
,3/|(x, Y, z)| will suffice. (An advanced brightness function ntiglonsider obstacles,
for instance.)

light source

Figure 3.23: Braitenberg vehicle with two sensord léght source

Furthermore, we need an agent object. To senst lighdefine a sensor, which has
an offset @,V) to the agent origin, and which in each cycle sumghe brightness of
all lamps in the world, returning the result asaativation value. Here, the agent has
two sensors, which are spatially apart and in thetfof the agent (see figure 3.23).

The movement of the agent depends on two wheelsafWd W), with different
velocitiesv; andv,. These velocities, together with the distaddsetween the wheels,
determine the vehicle’s movement distarscand the rotatiorp of the movement
vector, for the next simulation step (figure 3.24).

Figure 3.24: Movement of a Braitenberg vehicle
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The distances and the angle can simply be approximated as

1
S=E(\4+ \é) (3.14)
and
_iTv
= 3.15
¢ 2 (3.15)

whereby you might consider limitingg andv, so thats does not become larger
than a pre-defined maximum distance: because tmelaiion is discrete, large
velocities amount to a coarse resolution.

In every simulation step, the agent will be movetistances into the directionp,
and the agent itself is rotated by.2

We may assume; andv, to be proportional to the value of the wheel aititg
and therefore we will need agent actionthat updates them whenever the value of
the actuators changes.

The action is called by the Braitenberg vehicletsld adapter. The world adapter
consists of amction translator(which matches the data targets of the wheels thith
agent action to set the wheel velocities) amkecept translato(which matches the
value of the light sensors with a pair of data sesr

After the definition of the agent and the lamp albjeve have to select (or create) a
world with an accessible ground plane and tellatigor how to display both types of
object. We then set up a configuration that combithe object definitions, the world
definition and a node net.

In the node net editor, we create a new agent usisgconfiguration. The agent
will consist of two sensor nodes and two actuatmtes (figure 3.25).
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Figure 3.25: Basic nodes for Braitenberg vehicle

Each sensor node is assigned to the data sourcessponding to the agent’s light
sensors; from now on, the world writes activatiatues corresponding to the strength
of the light source into the sensor nodes. (Totkieactivation, switch to the world
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perspective, create a lamp object next to the aglejeict, and start the execution of
the node net.)

Likewise, the actuator nodes are each assigneddatatarget (only the wheel
data target should be available). Because no dictivanters the actuator nodes, the
agent does not move yet.
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Figure 3.26: Basic connections for Braitenberg vehicl

The most straightforward way of creating a lightldag agent consists in wiring the
sensors and the actuators in such a way that thedesor corresponds to the right
wheel and vice versa (figure 3.26), because thiy, vihe wheel that is further

distanced from the light will rotate faster, cregtia momentum towards the light
source. In the world editor, the movement of theragan be observed.

Tasks | Log | Library | Scripting | B8 Parameters 53 =0
lLeFr
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Figure 3.27: Braitenberg agent moving towards Igghirce

The same simple node net control a physical raioat,(Bach 2003b, 2005a). All it

takes is a world adapter that matches the inpun fphoto detectors to the data
sources, and the data targets to a control sigmahe robot's wheels. (Figure 3.28
shows the setup for a network that controls a Keept robot.)
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Figure 3.28: Controling a Khephera™ robot with thieddPsi toolkit

3.4 Implementing a Psi agent in the MicroPsi framew  ork

Naturally, the first step in realizing the goalstbé Psi theory within the MicroPsi
framework is an implementation of Dérner’s origifai agent. The current version of
the framework includes th8impleAgenta steam engine vehicle akin to Ddrner’s
Ema and destined to live in an island world, wheredtlects nutrients and water,
avoids hazards (such as poisonous mushrooms andytptants), and explores its
surroundings. The SimpleAgent has a motivationatesy that subjects it to urges,
which give rise to motives, and these may in tuenelstablished as goals. Goals are
actively pursued, and plans are constructed ancuée@ in order to realize them.

Our implementatiok¥! is aligned to Dérner's model and shares most sf it
architecture (please refer to the description efRi agent for details). In some areas,
especially with respect to perception and contrel,have introduced changes that are
due to the differences in the simulation and theoofunities offered by the

121 The best parts of the SimpleAgent have been imgiéed by Ronnie Vuine, while
conceptual blunders are due to the author.
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framework. The SimpleAgent is not a complete regiim of the MicroPsi agent
sketched above, but it already illustrates maniysajoals.

3.4.1 The world of the SimpleAgent

The SimpleAgent has been designed to live in amésworld of arbitrary size, filled

with discrete objects, and surrounded by an imfdssharrier of seawater. It can
move in discrete orthogonal steps. Its sensinadc is limited to the movement
distance, so every step brings it into a situat@mrscene) with new objects.

To maintain its functions, the agent needs nutsiemthich it can obtain from
mushrooms or from fruit. Fruits are part of certplants, they can be dislodged from
these plants with certain actions. Plants may changr time, i.e. they might grow
new fruit and so on. Also, the agent depends oremvathich is found in springs
(replenishable) and puddles (exhaustible).

Moving onto certain types of terrain, ingestingtagr plants (such as poisonous
mushrooms) or manipulating others (thorny busheay mamage the agent. The
island offers ‘healing herbs’ that may remedy thendge.

@ WorldMap £ ;,\ﬁji,‘,@v[k e

. Select objects (Ctrl for multiple)

Figure 3.29: SimpleAgent world (detail)

Within each situation, the agent perceives usingsaes that respond directly to the
features of objects. Because a situation typicedigtains more than one object, the
agent will have to select one before manipulatingvhich is done using &ocus

action The agent may distinguish between situations dasethe objects contained
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in them, and by keeping track of its movements betwscenes. Conversely, similar
objects can be kept apart due to the situationg #ne part of, and their different
positions within situations.

The interaction with the environment is facilitatedth a set of operators
(actions), such as eating, drinking, hitting, fdogsthe next object in the situation,
moving northwards, moving southwards and so son.

3.4.2 The main control structures of the SimpleAgen  t

The SimpleAgent consists of eight node spaces:

- Main Control initializes the agent, sets up an initial world dab and
maintains the action loop.

- Basic Macrosholds the elementary actions and strategies, ssdhiad-and-
error, finding an automatism and planning.

- Emotion/Motivations the motivational system of the agent and catesl#he
parameters of the emotional system.

- |IEPSis the space of the immediate external percept, lpgimitive sensory
data are organized into situations using hypothdsised perception
(HyPercept).

- Situation Memonholds working memory data, such as the currentsgaat
the active situation.

- Protocol Spaceontains the long-term memory of the agent.

- Plan Spacesncloses the planner and the resulting plans.

- Execution Spacholds the currently active plan and maintains xsoation.

Unlike Dérner’s agent, the SimpleAgent does notdnaesinglesense-think-acioop.
Instead, its modules work in parallel. For instariog level perception, the changes
in the motivational system and the execution ofrtfan action strategies take place
in different regions of the agent’s node nets, anthe same time. Likewise, there are
autonomous sub-processes, likgaabage collectothat eliminates memory elements
that have lost their links to other memory. In aredere the independent processes
might interfere, one process can block others folvanging the content of its node
spaces during critical operations.

The action loop of théMain Control space implements a simple Rasmussen
ladder. It is realized as a simple script that &nfg recursively run by a&cript
executionmodule. After starting the agent, the script wéitsthe initial world model
to form and then enters an infinite loop, wheree@ith step, the agent subsequently
tries to realize one of the following alternatives:

- find an automatism from the current situation tgoal (meanwhile specified

by the motivational system),

- construct a plan that leads to to the goal,

- explore unknown options, or

- do nothing.

To maintain that order, each of these options, Wiicesublinked to the loop,
receives a permanent pre-activation of descendingngth. Because the script
execution module attempts the alternative with Highest activation first, the agent
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always prefers automatisms over planning, and janever trial-and-error. The
agent thus acts opportunistically and goal-directed

=i
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P

2017 MNodeSpace: MainControl 0-1046912383497 Agent: micropsi  From state: initial  [218,50 ms/cycle 181 entities] &7

Figure 3.30: Main action loop

The Automatismmodule resides in thBasic Macrosspace and simply checks for an
already existing strategy to get to the currentl.gdiathe attempt to find an
automatism fails, control is given back to the ma@tion loop and plan construction
is attempted.

The planning behavior is located in tBasic Macrosspace as well, but links to
the Plan Creationmodule, which is situated in tHdan Spaceand simply performs a
backwards search through the space of memorizedtisihs and actions, limited by
time and depth. The plan elements are cloned frmstopol memory and eventually
aligned as a plan from the current situation togbal situation. Should planning fail,
then the current plan fragments are removed, aidsifsuccessful, thBlan Creation
module initiates its execution. Instances of exallgt plans are being held in the
Execution Spaceand are carried out by a script execution modéret This node
space also keeps track of the failure or succesglafs and terminates them
accordingly.

TheTrial-and-Error module is activated if no strategy for goal-diegttction has
been found—either because none is known, or bedhese is no goal that a known
strategy can be applied to. Thus, the agent needsquire new strategies, and it does
so by experimentation.



271

% HodeSpace: BasicMacros 92-1046006565802  Agents micrapsi  From states initial £ TRON =%

737
TralandError

& Triager [ [PraReq
Debug | [szartke
Actions |-

+{ CONCEP'

Figure 3.31: Trial-and-error script (simplified gérn)

The agent enters its world without pre-defined klemlge, and learns by trial-and-
error what it can do to satisfy its demands andvoid being damaged. However, in
the face of high complexity, we have found thané&eds pre-dispositions. Some
actions require a whole chain of operations to bdopmed in the right order, for
instance, food can sometimes only be obtainedrsy deeking a situation with a tree,
then focusing that tree, then applying a shakesad it, witnessing a fruit falling
and finally ingesting it. As it turns out, the padlility of that chain of actions
happening by chance is prohibitively low. The clemof success are much better if
there is a certain bias for some actions and apaithers. For instance, the agent
should be much less inclined to de-focus an ohjétiout first trying something with
it, and it should be very likely to just randomlylk away from a promising situation.
Therefore, it does not try all actions with equikkelihood, but depending on a
preference that is determined by a bias valuedohection:

preferencg,,, = (1+ biag,,,)(1+ randon{ 0.)) (3.16)

wherebiasis a value between 0 and 1.

Another difficulty arises in environments where e#ts of behavior conflict with
dangers. For instance, if the agent is confrontéth wnushrooms that are both
nutritious (appetitive) and poisonous (aversivetirede is no alternative food source,
it might poison itself. If the mushrooms arery appetitive, it may even choose them
as a favorite food if other nutrients are availalbitethese cases, the agent either needs
a strong bias against aversive food, a bias agdargjerous objects, or a teacher.
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3.4.3 The motivational system

The SimpleAgent is driven by its physiological demws for nutrients, water and
integrity, by its cognitive demands for uncertainggluction and competence, and by
its social demand for affiliation. The physiolodicdemands are determined by the
simulation world and measured by sensorsirge signals while the other (internal)
demands are expressed by urge signals within taetagogether they form the basis
of the motivational system, which is situated ia Bmotion/Motivation Space

At the bottom of the motivational system is the mledEmotional Regulation
This module calculates the emotional parameters frmges, relevant signals and
values from the previous step. The module maintdiasproto-emotional parameters
of competencegrousal certainty, resolution levelresLevel and selection threshold
(selThresholyl These values are directly visible at the modutgtes. Any subsystem
of the agent that is subject to emotional regufatidll be linked to these gates, and
receives the current emotional parameters viapheas of activation from there.
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Figure 3.32: Motivational system

The Emotion Regulation module is also the place restbe cognitive urges are
determinedcertaintyU andefficiencyUare calculated every step simply as difference
between a target value and the actual value aildeviat the respective gates.

At the slots, the module receives the values ofgthgsiological urges’ €xtU; »),
and the amount of change of certainty and competeiiccsome event occurs that
influences the system’s emotional state (stetdaintySandefficiency$. The way we
use these values is very similar to Dorner’s ‘Emgilifemechanism.

At every time step the module performs the following calculations:
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competenge= max( min( competepge i™,0 °°’1“’e‘e”je (3.17)

certainty = max( min( certainty, + iﬁe""’“"‘ys,q : I°e“a"“>) (3.18)
(1ot and 1" are constants to keep the values in range)

efficiencyy = target™ " competery (3.19)

certaintyl, = targef*™™ — certainty (3.20)

(target®™@™and target®™“"are target values representing the optimum levels o
competence and certainty for the agent.)

arousa| =max( certaintyl), efficiencyU ﬁ’ﬁ‘“)— competep (3.21)
resLevel=1-,/ arousal (3.22)
selThreshold= selThreshglgd aroug (3.23)

The urge signals are connected to motive nodesshmtepresent the need to fulfil
these urges (through learning, the motive nodesnatarn associated with strategies
that satisfy the demands). The modMletivation determines the dominant motive by
selecting one of the motives, based on its strerthh selection threshold and the
competence. As explained earlier in detail, thect&n threshold is added as a bonus
to the strength of the currently active motive terease motive stability, and the
competence is a measure for the expected chameal@ing the motive.

Whenever a motive becomes dominant, its assocetiorsituations that realize
the motive become active, and these situationglargified as goals that are stored in
a list. The final situation (the one that allowslizing the motive by a consumptive
action) is the primary goal, and t&»al Selectiormodule identifies opportunities to
reach it. If theSituation Memory Spadghe world model of the SimpleAgent) signals
that goals are reached, tB®al Checkemodule removes them (along with obsolete
subordinate goals) from the list.

The Event Evaluatiormodule is the last component of the motivatioyastem. It
checks for changes in the strength of motives, lvbimrrespond to the satisfaction or
frustration of demands. Thus, it acts a pleasuwpldasure system, and transmits a
signal that is used for learning. Whenever an etasta positive or negative valence
(i.e. satisfies or frustrates demands), the commresbetween the current situation and
the preceding situations in protocol memory arafoeted. Because of a decay of the
strength of connections in protocol memory, thenagends to store especially those
memory fragments that are relevant to reachingatds.

Learning and action selection are the two main sask the SimpleAgent’s
motivational system.

3.4.4 Perception

Perceptions of the SimpleAgent are stored generatethe Immediate External
Percepts Spaceorganized inSituation Memoryas a world model and stored
subsequently inProtocol Memory They are organized as trees, where the root
represents a situation, and the leafs are basmoserdes. A situation is typically
represented by a chain gfor/ret links that are annotated by spatial-temporal



274 The MicroPsi architecture

attributes. These attributes define how the foduatiention has to move from each
element to sense the next; thus, the memory reqissen of an object acts as an
instruction for the perception module on how toogrize this situation.

Situations may contain other situations or objett®se are connected with
sub/surlinks (that is, they argart of the parent situation). We refer to situationsttha
consist of other situations as ‘complex situatipms’ contrast to ‘simple situations’
that contain only single or chained sensor nalessublinked with a single concept
node.

Currently, the agent is equipped with a set of eletary sensors on the level of
objects (like sensors for water-puddles or banabpects). In Dorner's original
design, elementary sensors are on the level ofpgrad pixels and colors; we have
simplified this, but there is no real differencetle concept. Using more basic sensors
just adds one or two levels of hierarchy in the toéthe object representation, but the
algorithm for perception remains the same and [gdémented in thBasic Hypercept
module in the themmediate External Percepts Spaédl the agent learns about a
virtual banana, for instance, stems from the irtoa with this class of objects, i.e.
after exploration, a banana is represented asuatisih element that leads to a
reduction in the feeding urge when used with theoparator, might be rendered
inedible when subjected to the burn-operator, ahithvdoes not particularly respond
to other operations (such as shaking, sifting,kiinigyand so on). The drawback of the
current implementation that abstains from modekigpal properties is that it does
not allow the agent to generalize about colors, etod that the mechanisms of
accommodation and assimilation can not be emulateldw-level percepts.

3.4.4.1 Simple hypothesis based perception (HyPerce pt)

Whenever the agent enters a situation that canbeotecognized using existing
memories, it is parsed using thecommodatiorprocess in th&chema Generation
Module in thelmmediate External Percepts Spacesulting in a chain of spatially
por/retlinked elements, which argub/surlinked to a common parent: the situation
they are part of. But before this happens, the taggampts to match its perception
against already known situations; if it already gEsses a schema of the situation, it
uses the modul8impleHyPercepior recognition.

Hypothesis based perception starts bottom-up, bss cuom the elementary
sensors (which become active whenever a matchijegbbr feature appears). It then
checks, top-down, whether object or situation hijpeés activated by these cues
apply. If, for instance, the agent encounters abarobject and focuses its sensors on
it, the corresponding sensor node becomes actidetenperception algorithm carries
this activation to the concept node thatsis-connected with the sensor (i.e. the
banana concept). It then checks for matching s@tndtypotheses, i.e. situations that
contained banana objects in the past. If an olgesituation can only be recognized
by checking several sensors, the agent retriedesepiesentations containing the
active sensor as part ofpar/retchain from protocol memory. These chains represent
the adjacent sensors that the agent has to chleclg with their spatial relationship,
to establish which of the object and situation édatds can be assumed to be valid.
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Figure 3.33: Building a hierarchical representatiba situation (simplified)

HyPercept becomes faster by biasing the set ofidatel hypotheses according to
their probability, so more likely hypotheses aredted first. This applies especially
to situations that have been recently sensedtfieeagent will keep his hypothesis
about the environment stable, if nothing happenslisprove it). Besides that, the
SimpleAgent prefers hypotheses that contain mostaites of the cue feature over
those that have less.

Given that list of hypotheses, the perception medubw checks one after the
other. To check a hypothesis, ther/ret-path of the hypothesis’ elements is read from
memory. The sensors of the agent are then movéutetelement at the beginning of
the por/ret-chain, then along thpor-path to the next position, and so on until all
elements have been “looked at”. After checking ealelment, the sensor must verify
its existence in order not to disprove the hypdthd§ all elements of the situation
have been successfully checked, the hypothesnisidered to be consistent with the
reality of the agent environment.

If one of the elements doemt become active, the current hypothesis is deleted
from the list, and the next one is checked. If pdiliesis is confirmed until the end of
the por/retchain, it is considered to “be the case” and lihlkes the new current
situation.

The Psi theory suggests that perception can undergotional modulation,
especially with respect to the resolution level:itifis low, fewer elements of a
hypothesis need to be checked for the hypothedir toonsidered true. As a result,
perception is faster but inaccurate when resoluiolow, but slower and precise if
resolution is high. Because the SimpleAgent doess pesform low-level feature
detection (i.e. works with relatively few discretdjects at a time) this has no
noticeable effect, though.

3.4.4.2 Integration of low-level visual perception
Low-level visual perception has been omitted in $@pleAgent—primarily because
the author is not convinced that this particuladigon of complexity is going to be



276 The MicroPsi architecture

warranted by the results. The rigid mechanism aofilsioing pixels into line-segments
and shapes employed in Dorner's Psi agent is narrate model for low-level
perception, but scaffolding that acts as a pladddidor a more ‘scruffy’ low-level
perceptual strategy. A proper model of visual petioe should be capable of
processing real-world images as well (or at least tegree), and it should do so in a
plausible manner.

We do not think that our current level of underdiag of hypothesis based
perception can be scaled up for the processingaifworld data, at least not with a
literal understanding of the suggestions laid damvthe Psi theory. Dérner suggests
using detectors for local line directions and aging these into hierarchical
representations. In order to illustrate this,Backpropagation moduldor neural
learning has been implemented and used for lineetien.

The backpropagation module is assigned sets of snadevhereby each set
comprises a layer, and the output gatesf each unit have a sigmoidal activation
function. Activation enters through through the lihpayer @; nodesi, typically
connected to sensor nodes) and is propagated tdhamagh sur-connected hidden
layers @, nodesh), until an output layer (ofiy nodesk) is reached. Initially, the
weights of the links between the layers are sentall random values (for instance,
between -0.05 and 0.05). The layered network is sobjected to a large set of
training data(i,f}, where X is an the vector of the activations entering theut
layer, andt is the desired result vector of activations tisata be obtained at the
output layer.

Let w; be the strength of the link between two nodarsdj, anda; the activation
thatj receives from. During testing, the activation vectar is spread from the input
layer towards the output layer. The module thertudates the differences of the
output with the target valued; =o, (1-0,)(t, - 0,), and traces the differences back
to the input layer aj, =o,(1-0,) 2 w,J,. The weights of the network are then
updated according tav; — w; +Aw , where Aw; =learningRatéd, x (see, for
instance, Mitchell 1997).

Neural learning using backpropagation can be agplirectly to camera
imagest?2 We used horizontal, vertical and diagonal lineedtdrs as arrays of 10 by
10 sensor nodes with a layer of 40 hidden neurbas terminated in four output
nodes. After training using line segments with feitil noise, it was possible to
identify such segments in camera images as welloftimately, these segments are
very rough and relatively instable, whenever areobmoves, and the application of
HyPercept on such data does not provide relialsleltse with the exception of simple
geometric shapes, such as the outlines of book€&d Tasks like facial recognition
clearly require a different approach.

122 Here, an input stream from a web-camera was us®tian edge-detection filter applied.
The application of a complete scan with a ‘fovaahagement’ of a matrix of 10 by 10 sensor
nodes took roughly 0.4s per frame. This processddoe improved by only scanning areas of
interest.
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Figure 3.34: Low level perception of sensory feasuwith backpropagation

While it is not surprising that the detection ofstable line segments does not
integrate well with an essentially rule-based topvd hypothesis tester, this does not
mean that the general idea of HyPercept with itsoloo-up/top-down strategy is at
fault. Instead, a much more general implementatbithis principle is needed. A
good starting point might be the use of Gaborrfli@stead of simple line detectors at
the input layer, and a re-conceptualization of HgBpt using a variable number of
layers with radial basis function networks, witlgradual stabilization of hypotheses.
Research into visual perception is likely goingoone of the most fascinating and
fruitful areas of extension to the Psi theory, heseait will require the designers to
depart from discrete symbolic representations astef a deeper understanding of its
relationship to distributed processing.

Extending hypothesis based perception will alsodné® consider the self-
organization of ‘visual grammars’, the abstractioh objects into hierarchical
categories of components. One possible strateggistsnin reducing visual shapes
into skeletons, so-calleghock graphgSiddigi et al. 1998). Shock graphs can be
represented as hierarchies of nodes, where indiVidodes correspond to branching
points or end points in the skeleton, and the litikthe interrelations between them.
We have used these graphs for the supervised hgpafivisual prototypes, and then
matched these prototypes against the shock graptripggons of new objects for
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recognition (Bach, Bauer and Vuine 2008) Nevertheless, this approach is only a
starting point to explore models of visual peroeptiand perceptual cognition as a
topic goes much beyond the scope of this introduacti

3.4.4.3 Navigation

The SimpleAgent recognizes situations by the palgicarrangement of objects that
make them up. This has the benefit that the agaytbe “highjacked” and put into a

different position, and still be able to get bat¢k bearings. But obviously, the

arrangement of objects in a scene may vary: fdaim®, if the agent devours a piece
of fruit, the corresponding object is no longertpsrthe situation. While this creates a
new situation with respect to the local availapilif fruit, it should not create a new

situation with respect to navigation. In other wgrdhe agent needs to discern
between immobile features that can act as landmaridsvariable features, which are
not a pre-requisite for classifying a situation d¢bject).

The SimpleAgent uses a simplification as a solufionthis problem: using a
source of negative activation, it inhibits thosgeaks (or features) that are likely not
suitable for landmarks. Each type of element afadibns is linked to this inhibitor,
and the strength of the link is adjusted accordmghe estimated probability of the
element being a not a reliable property of theaditun. (Currently this estimate is
adjusted only whenever the agent witnesses a changesituation.) As a result, the
agent may use different parts of a situation dpsionn for planning than for
recognition—i.e. it can determine a place evene#tfires have changed, but may
incorporate the existence of these features intbéhavior.

Locomotion in the SimpleAgent is constrained tocti$e steps, which simplifies
the classification of situations. Continuousmovemenequires that the
conceptualization of scenes allows objects to helmnseveral scenes at the same
time, and leads to a continuously changing worlddetoas the agent navigates
through its environment. These changes are incdbipatwith the situation
recognition and planning of the SimpleAgent and é&me subject of different
implementations (see, for instance Bach 2003b).

3.5 Instead of a Summary

It is difficult to present a conclusion of this wohecause it does not solve a list of
problems, present a set of solutions or provetafistatements. Instead, it consists of
three summaries: the first one covers Dorner’shed the mind; the second, much
more fleetingly, the related discussion in theatiint related disciplines of Cognitive
Science; the third is concerned with an overvieva téchnical framework that serves
as a toolkit for implementing models of the theory.

Currently, the most comprehensive realization ef®si theory by Dérner’s group
is embodied in the steam vehicle agents of hisafi@! simulation (although new

123 A complete implementation of neural prototypingstiock graphs in MicroPsi has been
done and evaluated by Colin Bauer (Bauer 2004).

124 Autonomous region mapping and wayfinding using ofmi graphs with a continuously
moving MicroPsi agent is the subject of forthcomimark by Markus Dietzsch.
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work is certainly under way). This steam vehicléhis paragon of the software agents
discussed here, and they does not stray too fatsaffacks. The changes found in our
implementation are largely of a technical natutgréalization as an Al architecture
aimed at a better reusability of the model, itslanpentation as a multi-agent system
was meant to improve its suitability for experingrand the framework that it was
based on made it easier to use it as a tool ftmviihg the neuro-symbolic principles
it was supposed to embody. While the frameworktaedagent implementations have
since found extensions beyond that point, the autbels that these do not belong
here, lest they distract from the goals of this kwveto gain an understanding of the
Psi theory.

And yet: | do not think that MicroPsi and the simtidns introduced on these
pages should mark the end of our discussion. Wéarely at the beginning of our
journey.

3.5.1 The “Hard Problem”

The simple agent implementations of the previougiae illustrate the first step of
our exploration of the Psi theory, and the neunoisylic toolkit that they are based
on acts as a starting point for current and funesearch. The approach of the Psi
theory—and this includes the work presented hereretseasy to pin down to the
field of a particular scientific discipline. Psic&MicroPsi are not akin to most work
in contemporarypsychology because they do not focus on experiments withamm
or animal subjects, and, in a narrow sense, theyol@ven aim for a model of human
psychology. As an agent architecture, an approachmibdeling emotion, a multi-
agent system or an artificial life environment, kiEsi is not alone in the area of
Artificial Intelligence However, its main goal is different from findirtgchnical
solutions to engineering problems, or to advance tbrmal understanding of
mathematical domains; thus, it does not yield di@dar algorithmic solution that
could be pitched against competing algorithms, ogpasticular formalization that
advances the modeling of logics, reasoning methodsthe development of
ontologies, which makes it somewhat untypical ie tomain of computer science.
Instead, Psi and MicroPsi represent an attempt &ddter an understanding of the so-
called “hard problem” of human and artificial intgénce.

Gaining such an understanding is a difficult tas&t least because there is no
general agreement on what the “hard problem” rdallyn his famous essay “Facing
up the the problem of consciousness”, David Chalnidentified a small but not
exhaustive list obasy problemg§Chalmers 1995):

- the ability to discriminate, categorize, and raactnvironmental stimuli;

- the integration of information by a cognitive syate

- the reportability of mental states;

- the ability of a system to access its own intestales;

- the focus of attention;

- the deliberate control of behavior;

- the difference between wakefulness and sleep.

He notes that “there is no real issue about whethese phenomena can be
explained scientifically. All of them are straightivardly vulnerable to explanation in
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terms of computational or neural mechanisms,” askl avhat thehard problem
might be, if not an integration of all those easphfems. For Chalmers, the hard
problem is understandimghenomenal experience

At a glance, the Psi theory is all about the easplpms—although we have not
looked at many of the interesting “easy topics” éhesuch as subjectivity and
personhood, language, theory of mind and socialigf.the most interesting aspect of
the Psi theory is that it attempts to find answershe hard problem: how are the
individual faculties of a cognitive system integehtinto a whole that perceives and
acts, anticipates and feels, imagines and think8mé’s Psi theory is a valuable
starting-point to a discussion on an overall maghefmind.

MicroPsi is an attempt to carry on with this dissios, by summarizing the points
of the Psi theory, and by rephrasing them for défifi¢ disciplines of the cognitive
sciences. The result of this attempt is a set dfdimg blocks for a cognitive
architecture. By now, these building blocks havanfb applications for cognitive
modeling, robotics and education.

3.5.2 Tangible and intangible results

While the development of the MicroPsi framework vwagollaborative effort that
took several years and resulted in a large softwesgect, MicroPsi addresses only a
small part of the Psi theory. It demonstrates autaous agents that are situated in
virtual worlds. MicroPsi agents are capable of eéamal modulation, and they can
give a basic expression to these states. Even ingrertantly, they are motivated
through a polythematic urge system, which enables éxploration of their
environment and the autonomous learning of behaMaroPsi also includes simple
solutions for the problems of planning, hypothdssed perception, and perceptual
categorization, it has served as a robot contrchitecture and even as a framework
for the evolution of artificial life agents.

Researchers that want to work with MicroPsi arepfied with an environment to
conduct their experiments, which includes viewedifors, customizable simulation
worlds, networking capabilities, a web frontendrtim remote-controled simulations
over the internet and modules to integrate cammratiand robotic actuators.

MicroPsi is currently used outside our group, agoal for psychological
experiments, as a framework for the simulation whhn behavior, and in university
education.

| believe that the more important results were leescrete, however. They
consisted in illustrating the first steps of gamisn understanding of what it means to
model the mind, thereby adding to the most fastigadiscussion of all. In my view,
the Psi theory provides an exciting and fruitfutgpective on Cognitive Science and
the philosophy of mind.
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